A year in transition

Prof. David Bol

ECS group, ICTEAM institute, UCLouvain

david.bol@uclouvain.be

September 11, 2020

UCLouvain

www.**enmieux**.be

LE FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL ET LA WALLONIE INVESTISSENT DANS VOTRE AVENIR

Outline

Personal journey

Transition triggers

Pillars for socio-ecological transition in ICT R&D

A year in transition in UCLouvain ECS group

D. Bol

Social-ecological transition

3

ISSCC 2012 – IEEE JSSC 2013

Microcontroller SoC	This work	TI, ISSCC, 2011	MIT, ISSCC, 2008
CPU	16-bit MSP430 comp.	16-bit MSP430	16-bit MSP430 comp.
Technology	65nm LP/GP CMOS (dual core oxide)	0.13µm LP CMOS + FeRAM	65nm LP CMOS
Memory	64B I\$ + 18kB SRAM	32B I\$ + 1kB SRAM + 16kB FeRAM	8B \$ + 16kB SRAM
Die area	Core: 0.42mm² Total: 0.66mm²	Total: 4.4mm ²	Core: 1.62mm ² Total: 4.26mm ²
External supplies in minimum configuration	Single V_{dd} = 1-1.2V f_{xtal} = 32-100 kHz -	Single V _{dd} = 2.0-3.6V - -	Single V_{dd} = 1.2V f_{xtal} f_{MCLK} ~ 300 kHz @0.5V
Speed performances	25 MHz @0.40V (25°C) 25 MHz @0.44V (-40°C)	24 MHz	434 kHz @0.5V (25°C) 300 kHz @0.5V (0°C)
Active power	7 μW/MHz @0.4V	164 μW/MHz (FeRAM) 130 μW/MHz (SRAM)	27.3 μW/MHz @0.5V
Sleep power	1.5 μW @25°C 17 μW @85°C	< 6 μW @85°C	< 1 μW @25°C ~ 7 μW @75°C
Embodied energy and carbon footprint for fabrication of 1M units	195 GJ 11 T CO₂e	870 GJ 55 T CO ₂ e	1060 GJ 60 T CO ₂ e

=	Google Scholar	"carbon footprint" source:solid source:circuits
٠	Articles	6 results (0,04 sec)
	Any time Since 2020 Since 2019 Since 2016 Custom range	SleepWalker: A 25-MHz 0.4-V Sub-mm ² 7-μW/MHz Microcontroller in 65-nm [PDF] ieee.org LP/GP CMOS for Low-Carbon Wireless Sensor Nodes [PDF] ieee.org D Bol, J De Vos, C Hocquet, F Botman Solid-State Circuits, 2012 - ieeexplore.ieee.org [PDF] ieee.org cost nodes. As the IoT calls for the deploy- ment of trillions of WSNs, minimizing the carbon footprint for WSN chip manufacturing further emerges as a third target in a design-for-the-environment (DfE) perspective. The SleepWalker
	Sort by relevance Sort by date	 ♀ 99 Cited by 143 Related articles All 9 versions ≫ A 25MHz 7µW/MHz ultra-low-voltage microcontroller SoC in 65nm LP/GP CMOS [PDF] ieee.org
	 ✓ include patents ✓ include citations 	for low-carbon wireless sensor nodes Deal, JDe Vos, C Hocquet, E Bolman,
		[CITATION] SSCS DL Jake Baker Is a Volunteer at Undergrad MIDAS Festival in Dublin [People] K Olstein - IEEE Solid-State Circuits Magazine, 2014 - ieeexplore.ieee.org Michael Perrott —Ayman Shabra At Masdar City, a zero carbon footprint campus (from left): Lutfi Albasha, Chen Zhang, Yonatan Kifle, Rakesh Kumar, Abe Elfadel, and Ahmed Elian. F SSCS DL Jake Baker Is a Volunteer at Undergrad MIDAS Festival in Dublin … ⁽²⁾ 99 All 2 versions ⁽³⁾

A 65 nm 0.5 V DPS CMOS image sensor with 17 pJ/frame. pixel and 42 dB dynamic range for ultra-low-power SoCs

N Couniot, G de Streel, F Botman ... - ... Solid-State Circuits, 2015 - ieeexplore.ieee.org ... Second, the bill-of-material and carbon footprint for WSN production must Manuscript received December 22, 2014; revised April 11, 2015, June 19, 2015; accepted July 15, 2015. This paper was approved by Associate Editor Ken Suyama ...

☆ 99 Cited by 22 Related articles All 6 versions >>>

D. Bol

[PDF] ieee.org

Social-ecological transition

6

Challenges for a sustainable IoT:

Avoiding battery replacement

[D. Bol, « Can we connect trillions of IoT smart sensors in a sustainable way », IEEE S3S 2015]

Outline

) Personal journey

Transition triggers

Pillars for socio-ecological transition in ICT R&D

A year in transition in UCLouvain ECS group

Transition triggers

• 2017 - : Seminars for general audience on the Internet footprint

9

Transition triggers

• 2017 - : Seminars for general audience on the Internet footprint

D. Bol

Transition triggers

Coltan mine in North Kivu (Congo) Copyright: Stefano Stranges • 2018 : ENCOS workshop at UCLouvain

D. Bol

Transition triggers

 Dec, 2018 : Mildly bashed on social network after seminar at ETH Zurich

D. Bol

David Bol Assistant Professor at Université catholique de Louvain 1yr • 🚱

Just landed in Zürich to give a talk at ETHZ on ULP socs for a sustainable IoT.

🕙 28 · 2 Comments

Philippe Greiner • 1st

Data Science & Process Modeling, Electromechanical Engineer - Technord

It takes half a day to go to Zurich by train; compensating for the extra CO2 of the flight will take quite some sustainable IoT ;)

Like · 🕚 1 | Reply

12

Transition triggers

Ver va cumun autoritation

Pierre-Yves Gomez Le travail invisible

Enquête sur une disparition

FRANÇOIS BOURIN ÉDITEUR

Vivre l'effondrement (et pas seulement y survivre)

Par les auteurs de COMMENT TOUT PEUT S'EFFONDRER #

The Digital Tower of Babel

Big data,blockchain, quantum computing, artifical intelligence, 5G, self-driving cars, brain-computer interface, IoT, ...

No exponential is forever ... but forever can be delayed.

- Gordon E. Moore

The time is now for engineers to stop following blindly these exponential trends

Outline

) Personal journey

Transition triggers

Pillars of the socioecological transition

A year in transition in UCLouvain ECS group

 The social-ecological transition answers environmental change with social progress. – Prof. E. Laurent, 2015

Outline

) Personal journey

Transition triggers

Pillars of the socioecological

A year in transition in UCLouvain ECS group

Step #0 : realize that we are limited

• Time:

- 24 hours in a day
- Space: finite number of office desks
- People: finite number of people capable/willing to be good PhD researchers
- Publications: finite number of papers in <u>good</u> journals/conferences

Being able to say 'no'

Step #1 : selecting meaningful applications

- Positive ecological or social impact compatible with GHG emission reduction plan
- Focus innovation on fundamental needs

Step #1 : selecting meaningful applications

Replace KPI drive by reduction in carbon / energy / resource footprint (caution: ≠ efficiency !!!)

Step #1 : selecting meaningful applications

Social link

- Limit the potential for
 - abusive/detoured use of the innovation
 - rebound and systemic effects
- Must involve stakeholders

D. Bol

Example: audio sensing

<u>Ultra-low-power miniature</u> <u>batteryless vocal assistant</u> <u>supplied by solar power</u>

✓ Footprint reduction

D. Bol

- × No fundamental need fulfilled
- × Risk of rebound + detour

Acoustic forest monitoring

to detect fire starts, illegal sawing, poaching and monitor biodiversity

- ✓ Low footprint
- ✓ Ecological benefits
- Limited risk of detour

Dropped projects

- In 18 months, we refused at least 4 projects driven by companies because of no agreement on the target market
- Requires time to align with the companies
- Requires pedagogy to communicate

Step #2 : partnering with the right people / entities / companies

- Human aspect
- Open mindness
- Capability to follow the transition:
 - enough decision power
 and autonomy with respect to the shareholders
 - or already transition-oriented
- Hunt greenwashing and resort to facts (instead of ideology)

- 3. More resilient research activity Next steps
 - Identify dependency on major global companies
 - Consider open source alternatives and service from smaller local service providers
 - Caution: resiliency vs. efficiency
- 4. Participative governance

Challenges:

- Resiliency Local organization Social link
- identify key fundamental research questions
- happy sobriety mindset (philosophical work)
- preserve a sufficient level of "economic" success for the activity to be sustainable

This work was supported by the Walloon Region and EU region under FEDER project IDEES, the Brussels region under COPINE-IoT project, the F.R.S.-FNRS of Belgium.