the state of the		
Si	Мо	
14	42	
Cu	Ga	Mineral raw materials economics, sustainable
29	31	governance and policies.
Ge	As	THE THE THE
32	33	SICT 2020 DOCTORAL SUMMER SCHOOL ON
Y	Ru	SUSTAINABLE ICT
39	44	September 7-11, 2020
In	Sn	Dr. Patrice Christmann Independent researcher and consultant
49	50	Member of the UN International Resource Panel (2011-2020)
Sb	Те	
51	52	krysmine@gmail.com
Та		
73		

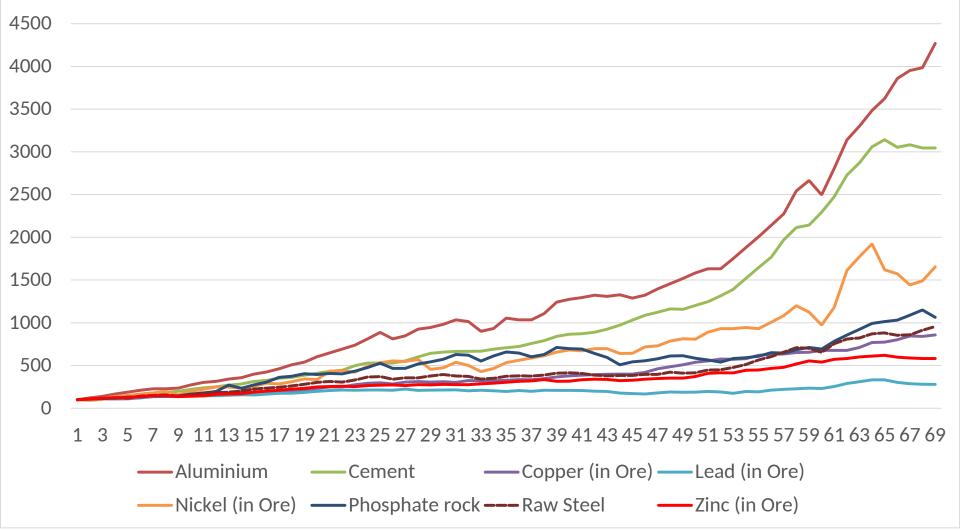
Minerals and metals: a (very) few economic aspects

- Minerals and/or metals are essential inputs for thousands of supply chains « modern » lifestyles depend, and thus the global economy on
- If you can't grow it, you need to mine it
- ... and then, to sustainably use it

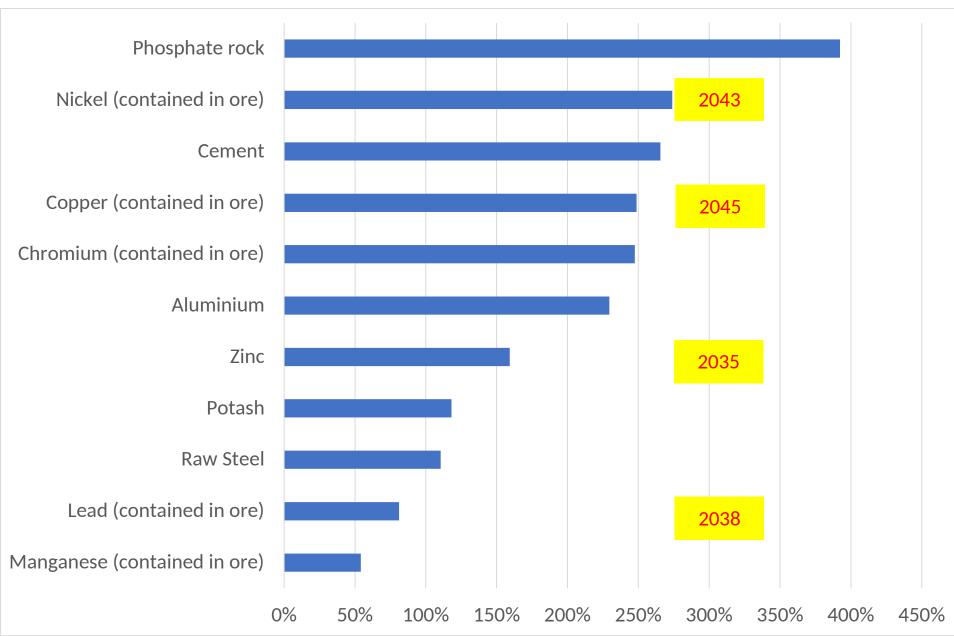
н													Не				
Li	Be INDUSTRIAL SCALE USE FOR ENERGY RELATED Be APPLICATIONS. Author: P. Christmann (unpublished in													Ne			
	English, published in French, this being an updated																
Na	Mg version November 2019)									Al	Si	Р	S	Cl	Ar		
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I.	Хе
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo

Lanthanides	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Hm	Er	Tm	Yb	Lu
(Rare Earth)														
Actinides	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

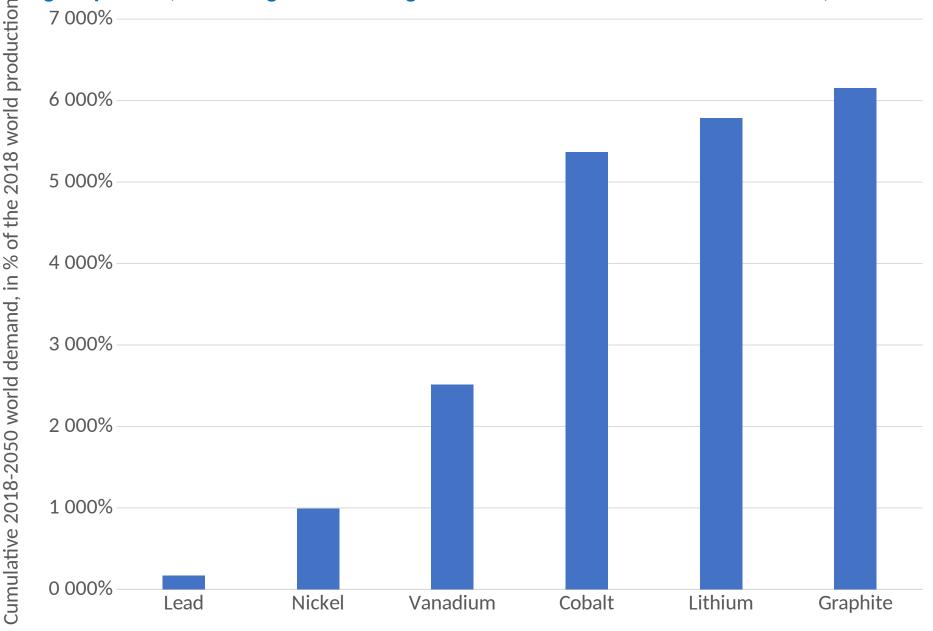
Energy storage Connectivity Energy saving Catalysis (fuel cells)


Electricity generation and transport Elements specific to nuclear electricity generation Photovoltaics

Permanent magnets for windmills and electrical/ hybrid cars



Lighting Supraconductors Oil and gas drilling muds


Relative world production growth 1950 -2018, expressed in points, of selected widely used minerals and metals Basis 100: 1950. Data sources: USGS, World Mining Data

Anticipated world production growth (low scenario) 2018-2050 of selected high-volume produced minerals and metals, and year of current static reserves exhaustion

Cumulative production, from 2018 to 2050, expressed as percentages of the 2018 world production, of mineral raw materials that would be needed for the production of electricity storage capacities, according to IEA's 2 Degrees C scenario. Derived from Hund et al., 2020.

Production depends on a number of factors:

- Geological resources
- Successful exploration
- Investment in exploration and in the development of new mines, ore processing, smelters and refineries
- Where needed, investment in infrastructure
- Availability of skills
- Access to the needed technologies
- Social acceptance
- Lowest technically possible environmental impacts

Some figures:

- 10 to 20 billion US\$ are invested annually in exploration.
- The AVERAGE capital expenditure required to commission a new mine is about 500 M\$. It can take over 10 Bn \$ to commission a top-sized mine
- Investors will not be very interested by projects that use less than 8% as a discounting factor for future cash flows, generate less than 30% return on investment and have a long pay back period (more than +/- 5 years)
- Project related data can be found by Googling, for instance « copper + feasibility study + NI 43-101 ». You will be able to read full feasibility studies (a few hundred pages each).
- Investment in mining is highly risky.

Sustainability issues in a nutshell

Key sustainability issues related to minerals and metals production:

- 16% of the world's CO2 emissions. Trend: growing. Main sources: aluminium, cement and steel production. Figures for individual raw materials and projects are very variable. They dépend on the material(s) produced, the processes and the energy mix used (coal being the absolute worst source of energy).
- About 90 bn t of raw materials are extracted annually + overburden + waste rock.
- Generation of massive amounts of waste, especially ore processing tailings, some can become a source of harmful releases of toxic metallic compounds

This is the tailings pond of Mina La Escondida (Chile), the world largest copper mine (about 5% of the world copper production, or 1.1 Mt Cu (2019), come from this mine.

The red line is 6 km long.

With an average of 0.7% Cu in the orem La Escondida generates about 150 Mt waste/ year.

In absence of other economic uses this waste will have to be safely stored for ever.

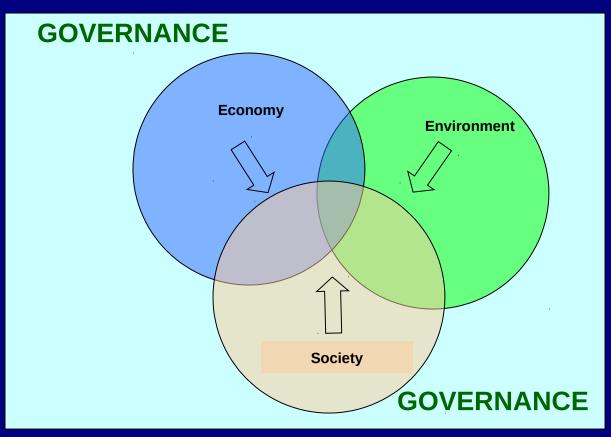

About 150 major tailing dams failures, some deadly, were recorded since 1960.

Image: ©Google Earth

EU and International resources Governance: a must, but still in its infancy.

GOVERNANCE IS THE FOUTH DIMENSION, AND THE DRIVER OF SUSTAINABLE DEVELOPMENT. IT HAS MULTIPLE COMPONENTS

Local, regional, national, multinational scales

Data > Information > Knowledge > Expertise inform Policies, Voluntary Initiatives, Management and Operational Practices, Regulations, Public Reporting, Evaluations, Education, Research and Innovation, Technological Choices

EU Minerals and Metals Resources Governance issues:

- EU is highly dependent on imports, especially minerals and metals. It is very exposed to supply issues as it's imports are widely dependent form countries (China and some others) with a very poor environmental/ social/ governance track record.
- EU has no legal basis to develop its own minerals and metals policy and regulations. But in can act in several relevant domains: environment, development cooperation, research and innovation (it does, mostly since 2014), trade.
- There is no EU minerals and metals governance framework, only some limited guidelines.
- On September 3rd the Commission published its 10 points Critical Raw Materials Action Plan [COM(2020) 474]. It remains to be seen how it will translate in specific, funded, actions.

ACTIONS FORESEEN IN THE EU CRITICAL RAW MATERIALS ACTION PLAN COM(2020) 474 6 03/09/2020

	Acton	Dates/ Time span		
	Establishment a European Raw Materials Alliance, initially to build			
1	resilience and open strategic autonomy for the rare earths and magnets	2020-2027		
	value chain, before extending to other raw material areas			
2	Develop sustainable financing criteria for the mining, extractive and	2021		
Z	processing sectors by the end of 2021	2021		
3	Launch critical raw materials research and innovation in 2021 on waste	2021-2027		
3	processing, advanced materials and substtution	2021-2027		
4	Map the potential of secondary critical raw materials from EU stocks and	2022		
4	wastes to identfy viable recovery projects by 2022.	2022		
	Identfy mining and processing projects and investment needs and related			
5	financing opportunities for critical raw materials in the EU that can be	2025		
	operational by 2025, with priority for coal-mining regions			
	Develop expertise and skills in mining, extraction and processing			
6	technologies, as part of a balanced transition strategy in regions in	2021-2027		
0	transition from 2022 onwards (Commission, industry, trade unions, Member	2021-2027		
	States and regions);			
	Deploy Earth-observation programmes and remote sensing for resource			
7	exploration, operations and post-closure environmental management	2021-2027		
	(Commission, industry);			
	Develop Horizon Europe R&I projects on processes for exploitation and			
8	processing of critical raw materials to reduce environmental impacts	2021-2027		
	starting in 2021			
	Develop strategic international partnerships and associated funding to			
	secure a diversified and sustainable supply of critical raw materials,			
9	including through undistorted trade and investment conditions, starting	2021-2027		
	with pilot partnerships with Canada, interested countries in Africa and the			
	EU's neighbourhood in 2021.			
	Promote responsible mining practices for critical raw materials through the			
10	EU regulatory framework (proposals in 2020-2021) and relevant	2020-2027		
10	international cooperation 32 (Commission, Member States, industry, civil	2020-2027		
	society organisations);			

UNSUSTAINABLE PRODUCT AND SERVICES PURCHASING CRITERIA

- Functions
- Looks
- Service
- Price (Beware of the hidden costs!)

SUSTAINABLE PRODUCT AND SERVICES PURCHASING CRITERIA

- Production conditions (environmental and social footprint)
- Functions
- Looks
- Service
- Maintainability
- Re-usability (at least of some components)
- Recyclability
- Price

TRANSPARENCY AND QUADRUPLE BOTTOMLINE ACCOUNTABILITY ARE KEY TO SUSTAINABLE DEVELOPMENT A detailed internationally peer-reviewed assessment of the global mineral resources governance landscape was published this year by the United Nations International Resource Panel (300 p. +, extensive bibliography):

https://resourcepanel.org/reports/mineral-resource-governance-21st-century

Thank you for your attention and for the invitation