lnec

SEMICONDUCTOR MANUFACTURING FOOTPRINT: SUSTAINABILITY AS ROADMAP METRIC

> SEPTEMBER 2020 MARIE GARCIA BARDON SICT2020

SEMICONDUCTOR TECHNOLOGIES IN ELECTRONICS SYSTEMS EXAMPLE OF A SMARTPHONE

- Battery, display, magnets, PCB
 - Contains REE, gold, Silver.., bulk material
- Semiconductor technologies= integrated circuits : Processors (digital logic), memory, RF circuits
 - tight dimensions, integrated materials stacks in small quantities, complex fabrication processes
 - no gold, no Silver, no REE
 - challenge for LCA and for recycling

SEMICONDUCTOR MANUFACTURING PROCESS FLOWS / PROCESS STEPS

- Deposition
- Lithography
- Etching
- Planarization
-repeat...
- up to 1500 steps

Pitch : distance from one feature to the next (ie. Gate pitch, Fin pitch, Metal pitch)

ເກາຍດ

IMEC LEUVEN

DIGITAL ROADMAP METRICS / SCALING DRIVERS : PPAC

CMOS technology nodes scaling

250nm	I30nm	90nm	65nm	45nm	32nm/ 28nm	l4nm	10nm	7nm	5nm	3nm	2nm

- **P**OWER : active, dynamic power during operation + leakage power : target -40%
- **PERFORMANCE** : speed, frequency of operation on critical path: target +20%
- AREA : logic standard cells area: target -50% (=2x transistors count)
- **C**OST: lower cost in \$ per wafer due to area scaling (performance/chip increases)

NUMEROUS INNOVATIONS TO CONTINUE SCALING/MINIATURIZATION LITHOGRAPHY, PROCESS, DEVICE, MATERIALS,

- PPAC metrics are the driving forces for the logic technology innovation since 50 years
- For a long time, dimensional scaling came "naturally", but since some nodes the manufacturing/ processing effort has increased to support these targets
- We are reaching a turning point with new types of scaling (3D, neuromorphic computing, magnetic RAMs, ferroelectrics...)
- The complexity lead to holistic approaches : Design Technology Co-optimization methodologies and tools

ENVIRONMENTAL COST

- Monitored separately in/after production in fabs
- Standards and targets
- Environment, Health and Safety = EHS
- Multi dimensional / transversal topic to bring it to design phase

ເງຍອ

FOOTPRINT OF FAB ELECTRICITY, WATER AND GAS EMISSIONS

FOOTPRINT OF FAB ELECTRICITY, WATER AND GAS EMISSIONS

FOOTPRINT OF MATERIAL SOURCING AND IMPORTANCE OF MATERIAL EFFICIENCY IN THE FAB

FOOTPRINT OF MATERIAL SOURCING

LCA OF SEMICONDUCTORS DIFFICULTY OF DATA COLLECTION

Technology nodes

- Few analysis available
- Complexity of the fabrication, multiple technologies
- Complexity of the supply chain
- Legal challenge related to IPs: Most players have access to part of the information

MOTIVATIONS FOR ENVIRONMENTAL ASSESSMENTS FROM INDUSTRY

- Local and global policies (RoHS, Carbon tax, GHG emissions trading, Product efficiency regulations)
- Cost, Supply chain sustainability, Business continuity
- Public image, concerns on climate change and/or local pollution

Existing efforts

- Environment, Health and Safety
- Sustainability teams inside companies, Corporate Social Responsability reports
- Coalitions, Grouped initiatives : World Semiconductor Council (WSC), Responsible Business Alliance (RBA)
- Collaborations with companies or universities for LCA (TSMC, Sony, Intel)

SUSTAINABILITY FOR SEMICONDUCTOR TECHNOLOGIES

- Semiconductor industry has a long running expertise in EHS but disconnected from the design phase
- Sustainability should become a roadmap metric, to identify early bottlenecks and guide choices co-optimized with functionality
- A bottom up approach based on process flows and process steps is needed
- Data collection for semiconductor manufacturing is a challenge
- Needs for transversal collaborations, construction of an ecosystem : industry (including suppliers, foundries and fabless), academy, regulations