

Electronics in LCA and Life Cycle Thinking of Electronics, Hot Spots and Lessons (to be) Learned

9.9.2020, SICT 2020, Louvain-la-Neuve, Belgium

Introduction

Sphera is the leading global provider of Integrated Risk Management software and information services with a focus on **Environment, Health, Safety & Sustainability, Operational Risk** and **Product Stewardship.**

Our Mission

To create a safer, more sustainable & productive world.

Sustainability

Operational Risk Management

Product Stewardship

© 2020 Sphera

Operationalize, scale, & optimize Integrated Risk Management

with our purpose-built solutions supported by information, innovation & insights

Setting the Scene

What are typical Products of IT and Electronics

Examples

Where and What is IT and Electronics

Examples

LCT of IT/ICT and the Internet

Examining the Sustainability of the Internet

LAYER 4 The device used by the person who performs maintenance on a machine	DEVICE	access to the data, normally through equipment, your PC or handheld device	LAYER 4 The device(s) used by the end consumer
LAYER 3 Transmission of the data to the service user		data transmission technologies and data service provider	LAYER 3 The service of sharing social experiences with the world and transmitting the video as data to end users' devices
LAYER 2 The facility where servers are stored and operated	FACILITY	physical data center where those machines are located and maintained	LAYER 2 The facility where servers are stored and operated
LAYER 1 The server on which data (originating from sensors on a machine) is stored	SERVER	the physical machines and servers where data is stored	LAYER 1 The server on which the video (data) you created for upload exists

© 2020 Sphera

Social Networking Example

Sectors and Supply Chain of IT and Electronics

Examples for a structural approach

Electrical components & Equipment

Smart Entertainment meters, hubs, & digital media: routers, switches TV, cinema, light & sound systems, media Batteries, control units players, mobile phones Semiconductors and ICs Components, passive (e.g. resistors), electro-mechanics (e.g. connectors) cables & transformers Electric motors Power tools Industrial machinery Manufacturing & technology process chains

Computing equipment: laptops, PCs. diverse control units

> Household appliances: whiteware etc.

Medical device/ equipment

Infrastructure manufacturer: networks. servers, routers

Car & automotive electronics

IT/ICT service providers

Infrastructure user: networks, servers, routers

Electronic equipment, **Consumer Electronics**, Infrastructure manufacturer

Telecommunications Service

providers, IT/ICT users

Machine tools & industrial equipment

Drivers for LCT and LCA of Electronics

Usual argumentation, dominated by efficiency and reduction targets

- Information and Communications Technology (ICT) responsible for 2.6% of global GWP emissions*
- Benefits of performing LCAs on electronics and electronic products
 - Getting beyond compliance management
 - Shift conversation from firefighting to scientific understanding of sustainability
 - Evaluating design trade-offs:
 - New power-saving technologies with greater hardware complexity
 - Move to more integrated, compact, and complex hardware systems
 - Digitizing conventional services
 - Electronics have significant impacts across entire life cycle
 - Area for innovation and differentiation in product design and product management
 - Balancing footprint and handprint (benefits from applying ICT for abatement in other sectors)

Drivers for LCT, LCA and Circular Economy

Future argumentation: towards zero carbon - European Green Deal for a carbon free Europe by 2050

- Companies, politics and economic regions require carbon neutrality
 - European Green Deal of the EC
 - CO₂-tax system in Europe
 - VW, BP, Danone, Daimler, Microsoft, Apple claiming to become carbon neutral (including scope 3)
- $\circ~$ Zero carbon means zero scope 1, 2 and 3 $\,$
- Scope 3 includes upstream and downstream (supply chain, logistics, use and EoL)
- Not just energy, but also materials and anything needs to become carbon neutral
 - Avoid
 - Reduce and Capture
 - Offset
- o Carbon neutral material is rare
- Circular Economy (CE) is key enabler for carbon neutrality as it can provide carbon neutral materials

Aspects of Electronics and LCA

Analyzing Electronic Products is Complex

- Manufacturing processes are complex,
- Process steps and details are not common knowledge
- Manufacturing is more process-intensive, less material intensive → impacts are not immediately apparent by visual inspection (energy & fuels)
- Electronic products have fast innovation cycles and electronic components evolve fast with rather low profit rates
- The complexity of electronic products, both in term of:
 - the sheer number of components

and

• the type and size of components

For Example...

PCB Manufacturing Process

IC/Semiconductor Manufacturing Process

Example

Electronics refer to almost entire Periodic Table of Elements

- Rare elements \rightarrow availability issue, substitution issue, resource criticality
- o Hazardous substances → awareness issue, substitution issue, health criticality
- Precious metals → cost- and effort-intensive, economic and resource criticality

Use-phase impacts can be significant...

But manufacture can be significant as well ...

- Power consumption can vary greatly depending on state (high use, standby, "off")
- Function dictates structure: since range of application is extremely wide, the range of products is also very wide → there is no average electronic product!
- Share of use phase dependent on product:
 - iPod Classic: Use phase <40% of impacts
 - Xserve server: Use phase >80% of impacts
- Eco-design strategy must be informed by life cycle perspective

Electronic products are difficult to classify

- Difference between electronics and electronic product
- Difference between electronics, mechanics, electro-mechanics
- To specify them the minimum information must contain:
 - Size (Area) and type of substrate
 - Number and type of ICs
 - Components with large mass (ring core coils, transformers, large capacitors, transistors etc.)
 - Everything that is precious
- Electronic product assemblies are complex, both in term of:
 - the sheer number of components
 - the type and size of components

LCA Modelling of Electronic Products

Comparison of impact between: 1 piece of IC vs. same mass of silicon (metal grade)

- What do you think?
 - Material composition is not the only determining factor.
 - Expect to see manufacturing processes lead to larger impacts associated with IC.

Modeling electronic products is slightly different from other products

- Components must be described with existing datasets
- Modeling with representative components (>10mio existing component types are represented by 251 datasets) based on size, materials and production processes

Electronics Database in GaBi

Active components

Passive components

Other components

Rules of Thumb in LCAs of electronic products

Use phase dependent on use scenarios

- o Power off mode
- Power active mode
- o Power sleep mode
- 0 ...

Manufacturing

- Mechanics mass dependent (e.g. housing)
- Electro-mechanics mass dependent (e.g. cables, connectors)
- o Electronics
 - Size of board
 - Size of die (for chips/ICs)
 - Massive components
 - Precious metals (in components, mechanicals, or board)

Modeling a Power supply Unit

Modeling a Power supply Unit

How to describe the PSU?

- o Total mass: 0.872kg
- Mass of plastic housing: 0.15 kg
- Mass of cables: 0.20 kg
- Mass of inlet filter: 0.04kg
- Mass of circuit board (Printed Wiring Board, PWB): 0.482kg
- Area of circuit board (Printed Wiring Board, PWB): 0.0178 m2
- Number and type of electronic components on the PWB
- Mass of connectors with and without gold contacts

Electronic component	Amount	Unit	Mass
Printed wiring board FR4 2s4l (AuNi)	0,0178	m2	0,2625224
Ring core coil	7	N pieces	0,154
Capacitor Al-capacitor axial THT (6g)	6,6	N pieces	0,0396
Connector (without Au)	0,012	kg	0,012
Coil quad-chokes (2.5g)	2,6	N pieces	0,0065
Capacitor film-capacitor boxed (3.2g)	0,9	N pieces	0,00288
Transistor (290mg)	8	N pieces	0,00232
Capacitor film-capacitor unboxed (150mg)	9	N pieces	0,00135
Diode power (93mg)	5,2	N pieces	0,0004836
IC SO 8 (80mg)	4	N pieces	0,00032
Resistor flat chip (0.6mg)	40	N pieces	0,000024

PSU subcomponent analysis I

- Contribution by the subcomponents to total mass, CO2 emissions, PED and environmental Impact Categories (CML, 2001)
- All impact categories are shown as 100%, thus they are not comparable to one another

PSU submodule analysis II

- All environmental impacts are dominated by the impact coming from the populated printed wiring board (PWB)
- The relative contribution of the PWB is considerably higher to any and all impact categories than to the total mass
- The relative contributions of the housing, the inlet filter and the cables are lower to any and all of the impact categories than to the total mass

PWB analysis I Electronic components and processes in PWB manufacture

PWB analysis II Environmental "hotspots"

- Substrate: rigid board made of FR4, 2-sided, 4-layer, Gold-Nickel finishing
 - By far the highest environmental impact in all categories
 - Long, multi-step production chain of the PWB itself (per area), upstream production of raw materials mainly from gold (less from nickel, copper, epoxy resin, glass fibres)
- Second largest contribution comes from large passive components (seven ring core coils etc.)
 - Contribution is due predominantly to sheer mass
- Relative to their small mass (10-100 times less than power transistors, connectors, or large capacitors), the contribution of ICs is outstanding: about half of any of those component groups, and twice as much as the diodes of the same mass range
- The assembly process itself needs energy, and contributes to the total, but does not dominate
- Small passive components, such as resistors do not contribute significantly to any impacts

Screen, Scope, Scale of IC Models for LCA

Screen Scope Scale approach helps to focus sustainability investments on core leverages

Scale

Integrate, automate and embed in your core business

Our aggregated electronics modules are adequate for screening and proxy estimates

- Electronics Database, components already highly aggregated systems (ICs, PWBs etc.)
- Still too detailed to calculate electronics or IT devices
- We offer some modules even higher aggregated cannot be representative
- Some offered parametric to be adaptable
- Examples: populated PWBs with signal or power electronics, HDDs, connector model, cable model, TfT display, open semiconductor model

When to use

- Need a proxy
- Need hotspots overview of larger systems, where electronics only one subaspect
- Need a fast response

Integrated circuits require complex manufacturing processes

Source: TSMC

Our underlying model is capable of assessing representative product types of semiconductor

Our open IC model offers the flexibility to adapt parameters to increase accuracy

Open IC model – for representative product types

Opening significant parameters of the semiconductor environmental profile such as

- o Die size
- Techonology node (generation)
- Mass of gold, housing, leadframe

When to use

- Specific supply chain data is still very challanging to obtain
- You want to represent your product with higher accuracy

Representativeness risk: Same product type can have different material composition

Our material declaration-based model evaluates a specific product in a specific supply chain

Material Declaration based model (from representative to specific product modeling)

Opening significant parameters and full flexibiliy to model a specific product type

- o Electricity grid mix (front-end and back-end)
- o Die size
- o Bond wire
- o All material masses
- Technology node (generation)
- Transportation from manufacturing to assembly

Advantages

- Best available info / most accurate results
- Unlimited reproducibility of other ICs
- Ability to see the material declaration values of all existing GaBi database ICs (parameter explorer)

Scale

Summary and Lessons Learned

The New Normal

- Zero carbon target is main driver for LCT
- Scope 3 calculation typically involves electronics as it is part of our live, business and products
- Electronics and data management (internet, cloud etc.) are part of all sectors and all sectors analyse their footprints
- Electronics, product service systems (PSS), smartness, digitalization and virtualization improve systems (better handprint compared to state of the art), but electronics have a significant environmental footprint
 - Complex systems
 - Impact independent from mass
 - In-transparent supply chains
 - Up to 90% are elements are employed from periodic table of elements

Drivers of Environmental Impact Contribution in Electronic Products

4 aspects rule – order can switch depending on type of product

Rule #1: Size of PWB	Substrates may be single or multiple layered. Each layer means more processing steps, more energy and materials Substrates may have Gold-Nickel finishing, see rule #4		
Rule #2: Number and type of ICs	The die size largely determines the impact of the IC, because of the highly energy-intensive operations upstream (wafer fab)		
	ICs contain gold, silver and other precious metals, see rule #4		
	Large ICs, such as the Northbridge and Southbridge of computer motherboards, also contain a substrate of their own (multi chip modules, MCM)		
Rule #3: Mass	Higher mass, higher energy input, if the other rules are exhausted		
	20 g can be heavy on a board of 10 g, e.g. large capacitor or ring core coil vs. a tiny simple IC		
	Heavy chassis, housing or frames around electronics		
Rule #4: Anything that is precious	Precious metals have the highest impacts per mass (commodities)		
	Gold and gold plating, e.g. PWBs, connectors, pins, contacts, bond wires etc.		
	The smaller the electronics (miniaturization) the more purity and precious metals are used per total mass of electronics		

