INN OF ALLEARNING & TRAINING PACKAGES

LCA PRACTICAL GUIDE

David Sanjuan Delmás (Ghent University)

- Introduction to LCA
- Goal and scope
- Inventory analysis
- Impact assessment
- Interpretation
- Use of LCA
- Example

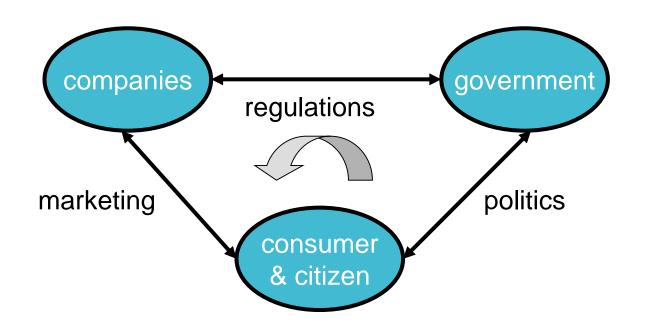
We start with a personal question:

Suppose you need a new pair of trousers, blue jeans. You go to the shop and you see two Diesel jeans. Both they have the same cut, the fabric has the same feel and touch, and the same colour. Suppose the quality is the same, and one of the two has a green sticker with a statement of Diesel that this jeans has been produced greener than the other jeans of Diesel.

Suppose that you believe Diesel, and suppose that both pairs of jeans have the same price. Who of you will buy the jeans with the green sticker?

Suppose the normal jeans costs 80 euro and green jeans will costs 85 euro. Who of you will still buy the jeans with the green sticker? (please be honest)

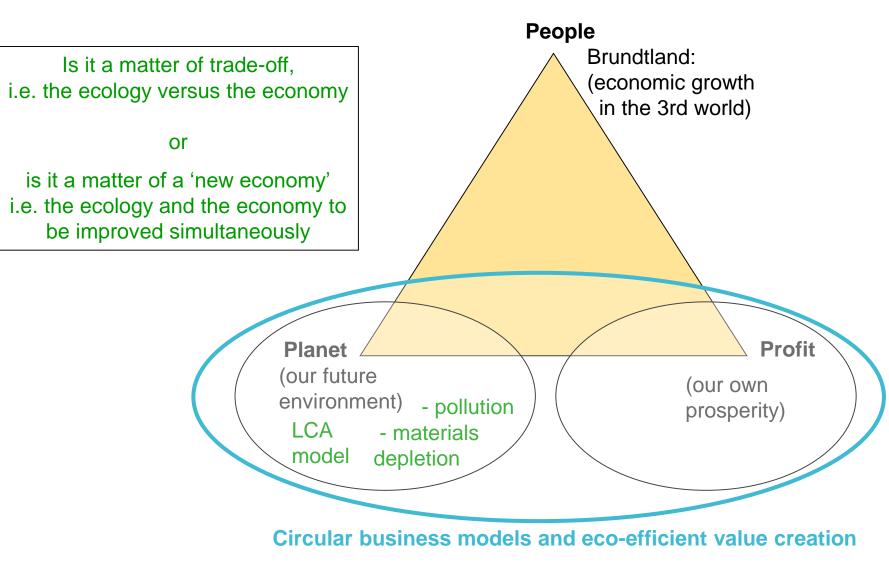
Suppose the green jeans costs 90 euro. Who of you will still buy the jeans with the green sticker?



Enquiries in Western Europe show:

- 75 80 % of the people care for the environment, however
- 2 5 % of the people are prepared to pay more for a 'green' product
- About 50% of the students do not buy green labels:
 - regard it as 'green washing'
 - mistrust the quality when the price is the same

The road towards Sustainability: the interaction of the 3 stakeholders

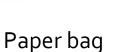

Source: Vogtlander J.G. et al. 2014. Eco-efficient Value Creation, Second edition, Delft Academic Press

The road towards sustainability:

- Clients buy products in shops on the basis of quality/price ratio (sustainability is unimportant in the shop)
- However, clients act also a citizen in politics: a majority asks the government to set strickter regulations
- Companies accept regulations when they are 'level playing field'

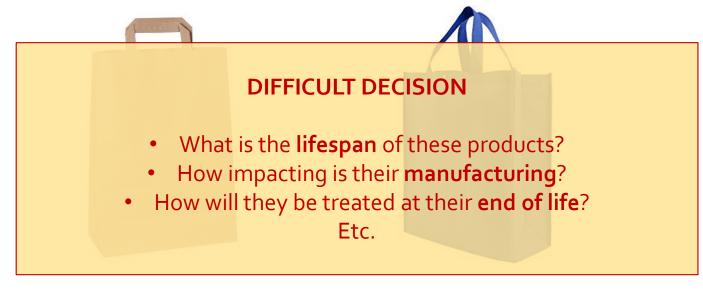
The basics of Sustainability: the 'Triple P' of Planet, People, and Profit

Source: Vogtlander J.G. et al. 2014. Eco-efficient Value Creation, Second edition, Delft Academic Press


Sustainability according Brundtland and Elkington

- Brundtland (1987) looked at the relationship between the poor environmental situation and poverty in 3rd world countries
- Elkington (1994) looked at business strategies, and proposed a more balanced trade-off in business:
 - saving our **planet**,
 - care for **people** :a better distribution of wealth
 - **profit** of your own company

The key question: Which of these products is the most sustainable? How to decide it?


Reusable plastic bag

A key issue in our modern world: "what is true and what is not true?"

- Many companies are marketing by 'window dressing', since they want to be perceived greener than that they are.
- NGOs tend to spread alarming 'guts feel' news since they belief that people should be made aware, but adhere to marketing strategies that avoid the real complexity of issues.
- Who can we trust anymore?

The key question: Which of these products is the most sustainable? How to decide it?

Paper bag

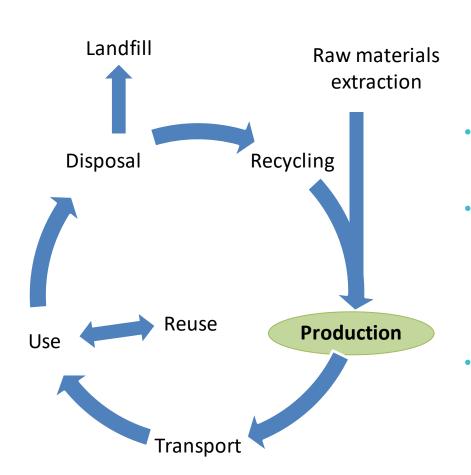
Reusable plastic bag

A key issue in our modern world: "what is true and what is not true?"

- Many companies are marketing by 'window dressing', since they want to be perceived greener than that they are.
- NGOs tend to spread alarming 'guts feel' news since they belief that people should be made aware, but adhere to marketing strategies that avoid the real complexity of issues.
- Who can we trust anymore?

The key question: Which of these products is the most sustainable? How to decide it?

What is Life Cycle Assessment – LCA ?


"Compilation and evaluation of the inputs,

outputs and the potential environmental impacts

of a product system (good or service) throughout

its life cycle, from the extraction of raw material

to product disposal"

Life Cycle Assessment is about mass- and energy balances

- Considers the **entire life cycle** of a product
- Quantifies **resources** consumed as well as **emissions** into the **air, water and soil** that can be attributed to the product.
- Provides indicators of the product's contribution to environmental problems such as climate change, toxicity (human and ecosystems) and resource scarcity

1. Product comparison

Examples:

- Alkaline battery vs rechargeable battery?
- Fossil vs bio-based plastic?
- Centralized vs decentralized wastewater treatment?
- Concrete vs wood?

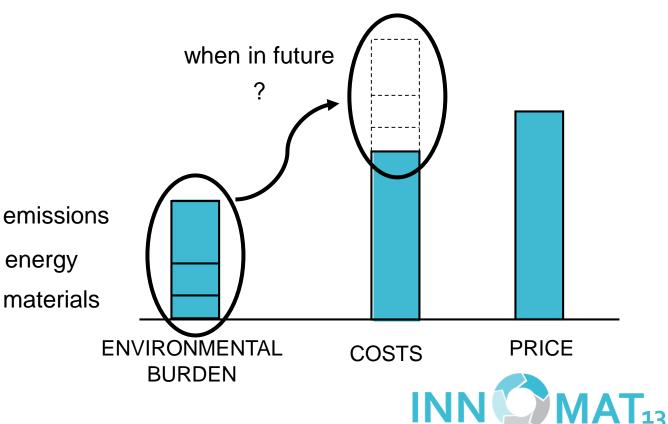
- 1. Product comparison
- 2. Product design and improvement

Example: the LCA of a knife

LCA results

- Material consumption largest impact: steel
- Use phase varies: maintenance (handwashing vs. dishwasher)

Design strategy example

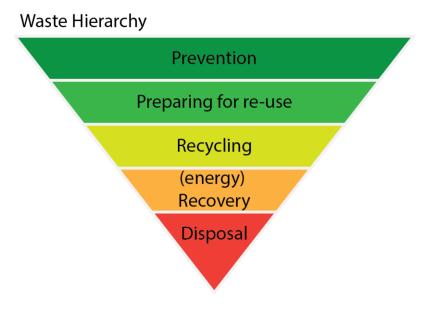

- Reduction of blade's thickness + use of recycled PP in handle
- Communication to user about best maintenance (handwashing vs. dishwasher)

- **1**. Product comparison
- 2. Product design and improvement
- 3. Environmental Product Declarations, EPDs
 - EPDs are product descriptions with environmental information, in a well organised, trustable, and transparent certification system
 - It is available in the building industry, and becomes available in the European food industry as well
 - It is supposed to make an end to the ever increasing mess of labels

- **1**. Product comparison
- 2. Product design and improvement
- 3. Environmental Product Declarations
- 4. Strategic planning of product innovation
 - LCA accounts for "external costs" in addition to the "internal costs"
 - Regulations may "internalize" external costs via: taxes to be paid, tradable emission right prices, required Best Available Technology (not at excessive costs)
 - When it will happen is not known, but that it happens is quite certain

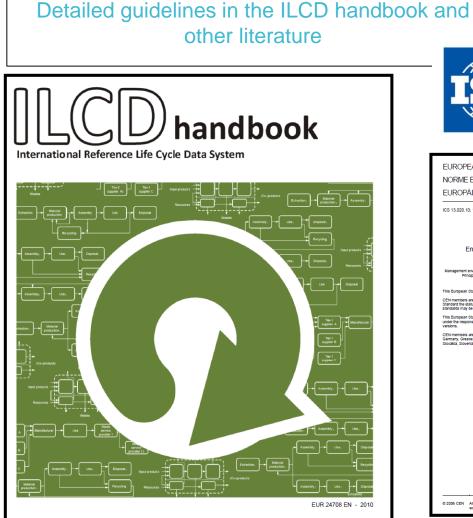
Source: Vogtlander J.G. et al. 2014. Eco-efficient Value Creation, Second edition, Delft Academic Press

- 1. Product comparison
- 2. Product design and improvement
- 3. Ecolabelling
- 4. Strategic planning
- 5. Policy usage
 - Helping to develop long-term policy
 - Evaluating effects of alternative techniques
 - Providing environmental impact information to broad public



Important element of European environmental policy

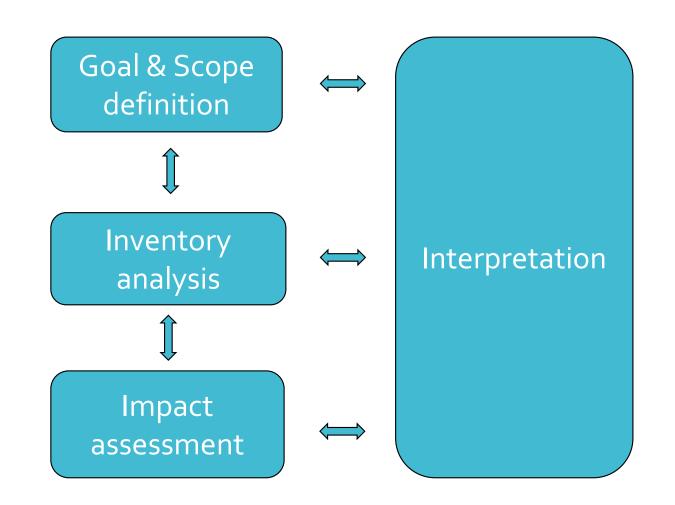
- **1**. Product comparison
- 2. Product design and improvement
- 3. Ecolabelling
- 4. Strategic planning
- 5. Policy usage
- 6. Comparison of alternative treatment processes of waste materials, waste water, etc.



Life Cycle Assessment is well specified:

- Norms and definitions
- Scientific papers
- Handbooks
- Databases

General guide for Life Cycle Assessment - Detailed guidance



	EN ISO 14040
NORME EUROPÉENNE	
EUROPÄISCHE NORM	July 2006
ICS 13.020.10; 13.020.60	Supersedes EN ISO 14040:1997, EN ISO 14041:1998 EN ISO 14042:2000, EN ISO 14043:2000
	English Version
	ment - Life cycle assessment - Principles nework (ISO 14040:2006)
Management environnemental - Analyse du cycle de Principes et cadre (ISO 14040:2006)	vie - Umweitmanagement - Ökobilanz - Grundsätze und Rahmenbedingungen (ISO 14040:2006)
This European Standard was approved by CEN on 19	June 2006.
CEN members are bound to comply with the CEN/CEN Standard the status of a national standard without any standards may be obtained on application to the Centr.	ELEC Internal Regulations which stipulate the conditions for giving this European alteration. Up-to-date lists and bibliographical references concerning such national al Secretariat or to any CEN member.
This European Standard exists in three official versions under the responsibility of a CEN member into its own versions.	s (English, French, German). A version in any other language made by translation language and notified to the Central Secretariat has the same status as the official
CEN members are the national standards bodies of Au Germany, Greece, Hungary, Iceland, Ireland, Italy, Lat Slovakla, Slovenia, Spain, Sweden, Switzerland and U	istria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France. via, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania nited Kingdom.
	cen
COMITE	CONSTITUE FOR INARABELATION EUROPEIN DE NORMALISATION EUROPEIN DE NORMALISATION
COMITE EUROPĂI	EUROPÉEN DE NORMALISATION

The stages of and LCA study

Goal & Scope definition must include at least:

- Aim of the study, e.g.
 (1) a comparison of 2 or more products, or improvement of the environmental characteristics of a product chain
 (2) for internal or external use
 (3) choice of the relevant indicator(s) or single indicator system
- Scope of the study, e.g.
 (1) system description including flow diagram
 (2) system boundaries
 (3) what is included or excluded
 (4) transport scenarios
 - (5) life time assumptions (technical or economic)

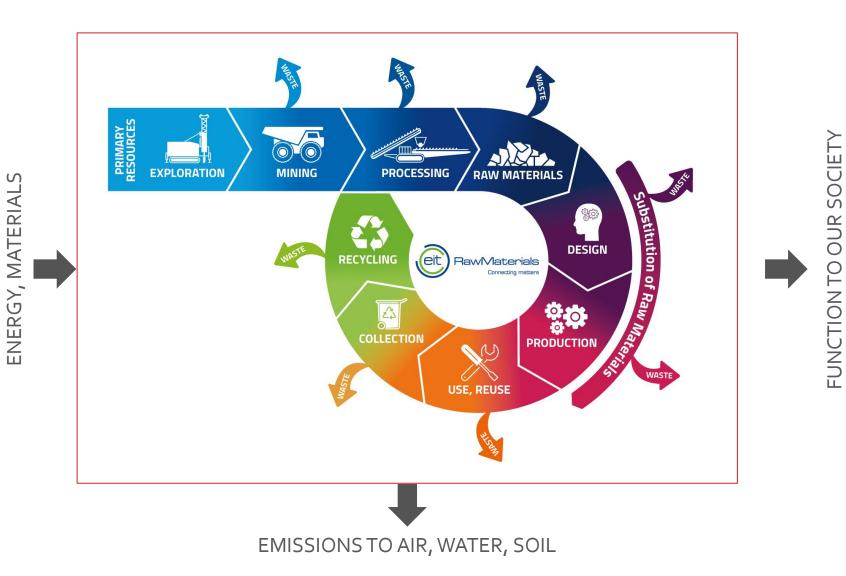
The "Functional Unit"

٠

The 'functional unit' in LCA: the delivery

The **functional unit**

- The reference unit for the study (the delivery)
- What? How much? How long? Which quality?

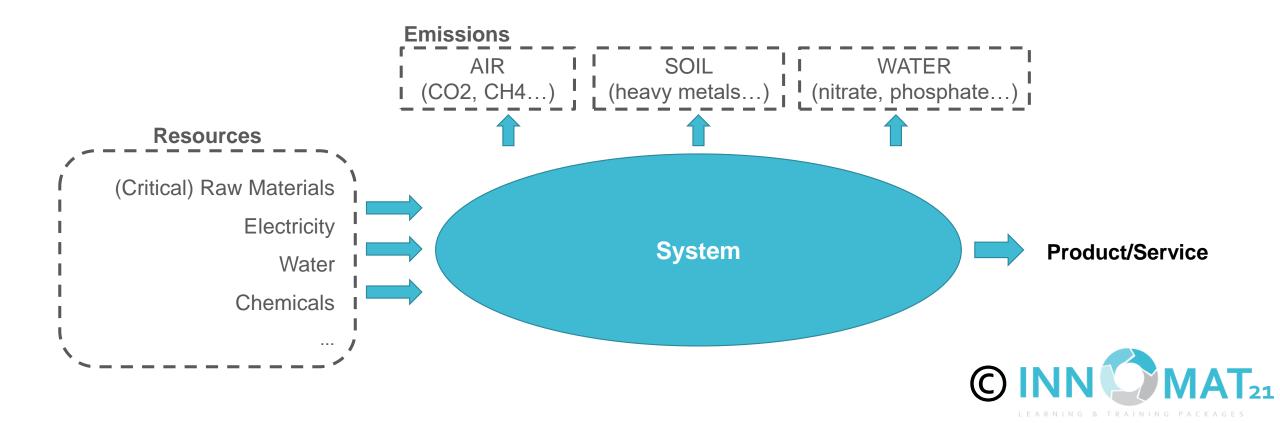


Examples:

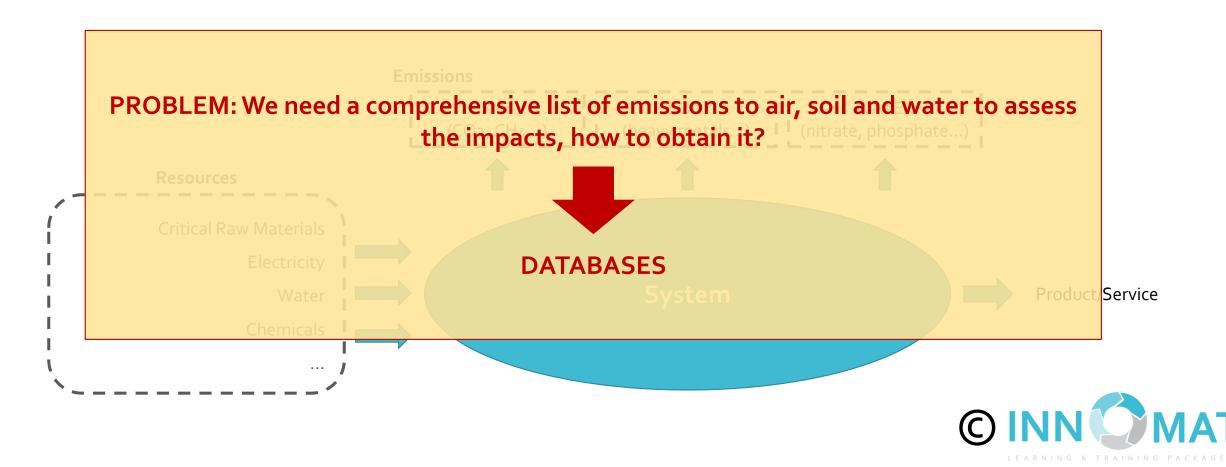
- Supply of 100.000 lumen lighting during one year (= 90h)
- Plastic or paper bag for shopping :10 kg weight max, 15 litre volume (35 cm x 35 cm x 15 cm): how many times re-usable? (or calculate per shopping session)
- Treatment of 1 m³ of wastewater
- Production of 1 kg steel (is called 'declared unit')

System description and system boundaries of an LCA for a product

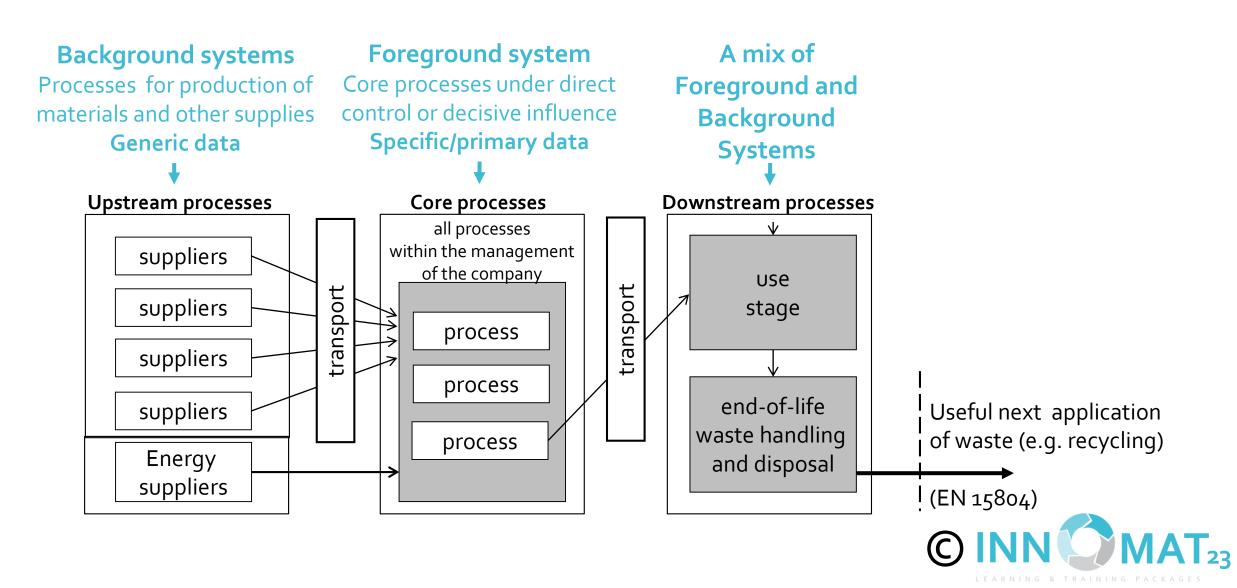
• Excluding a stage or element should be properly justified


Example:

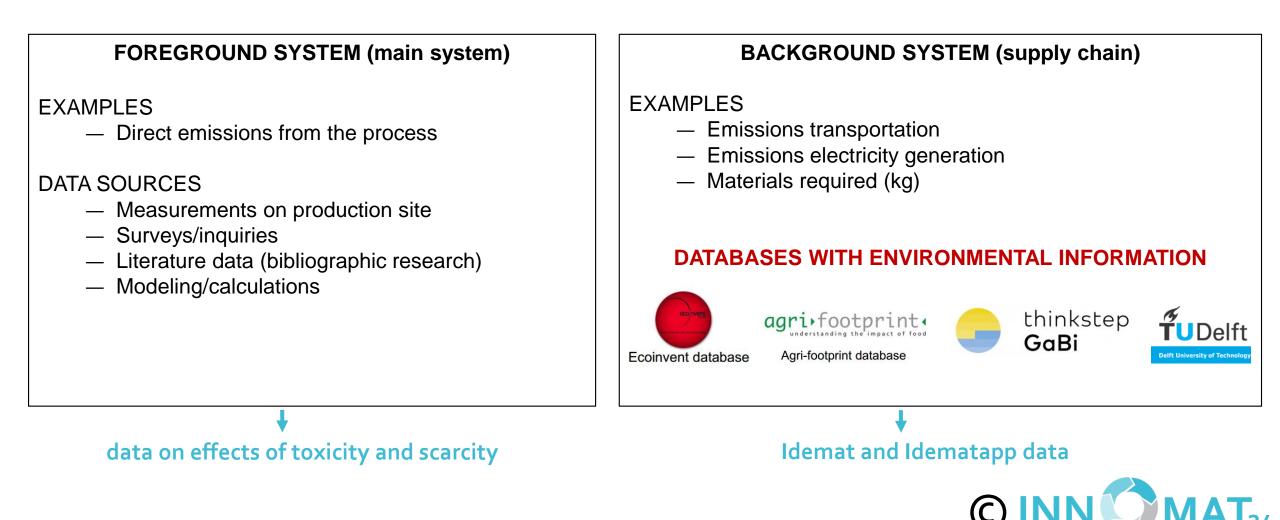
- Not important for the decision-making
 (e.g. in a comaprison: subsystems which are the same for both systems)
- Not relevant impacts (e.g. below 1 or 2 %)
- Cradle to gate
- Cradle to cradle

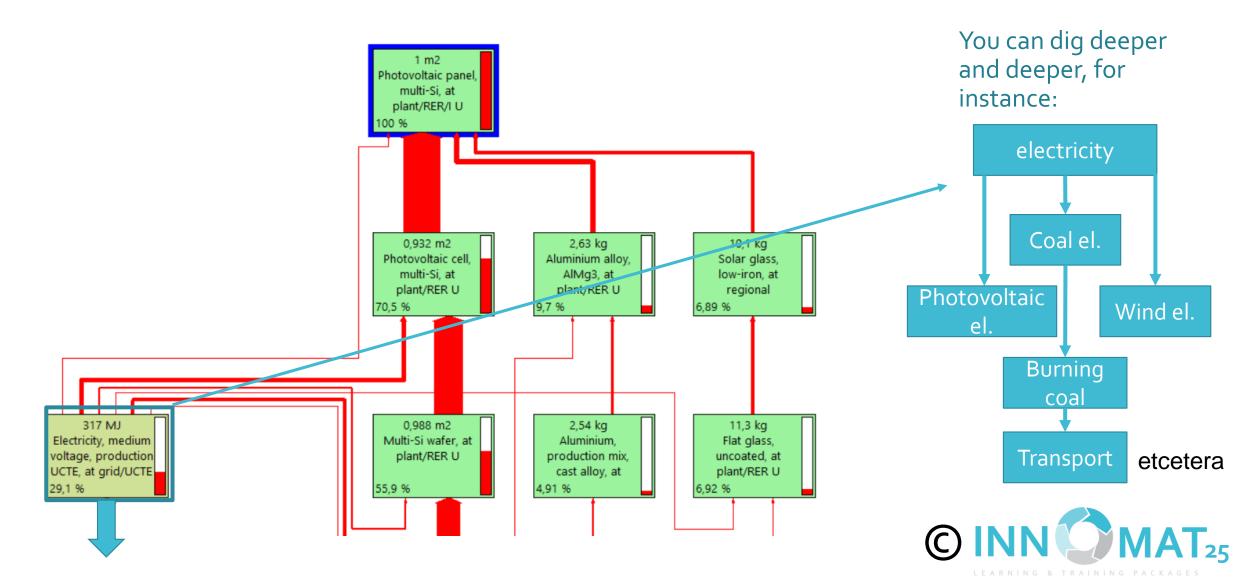

Life Cycle Inventory (LCI): Gathering all the necessary data to conduct the LCA

Once the LCA is defined, we must collect the necessary data:



Life Cycle Inventory (LCI): Gathering all the necessary data to conduct the LCA


Once the LCA is defined, we must collect the necessary data


The foreground system and background systems, a practical consideration

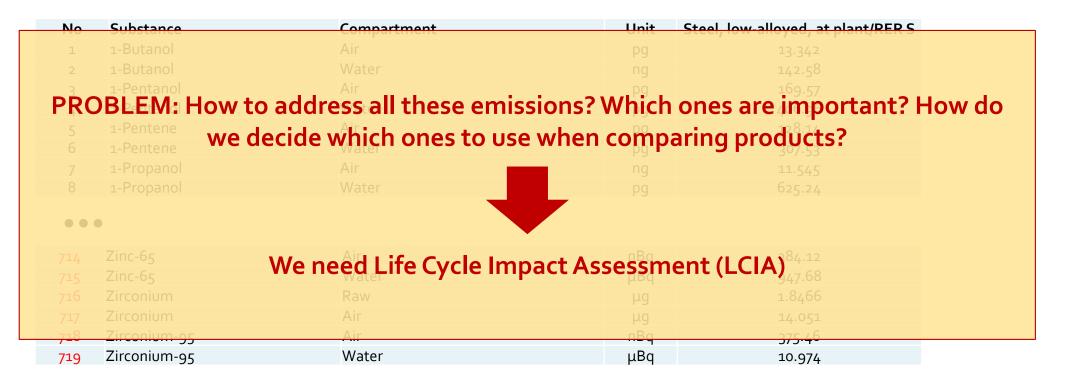
Potential sources for the Life Cycle Inventory (LCI)

"The Tree" in LCA: assembly of existing background processes lead to new LCAs of new products

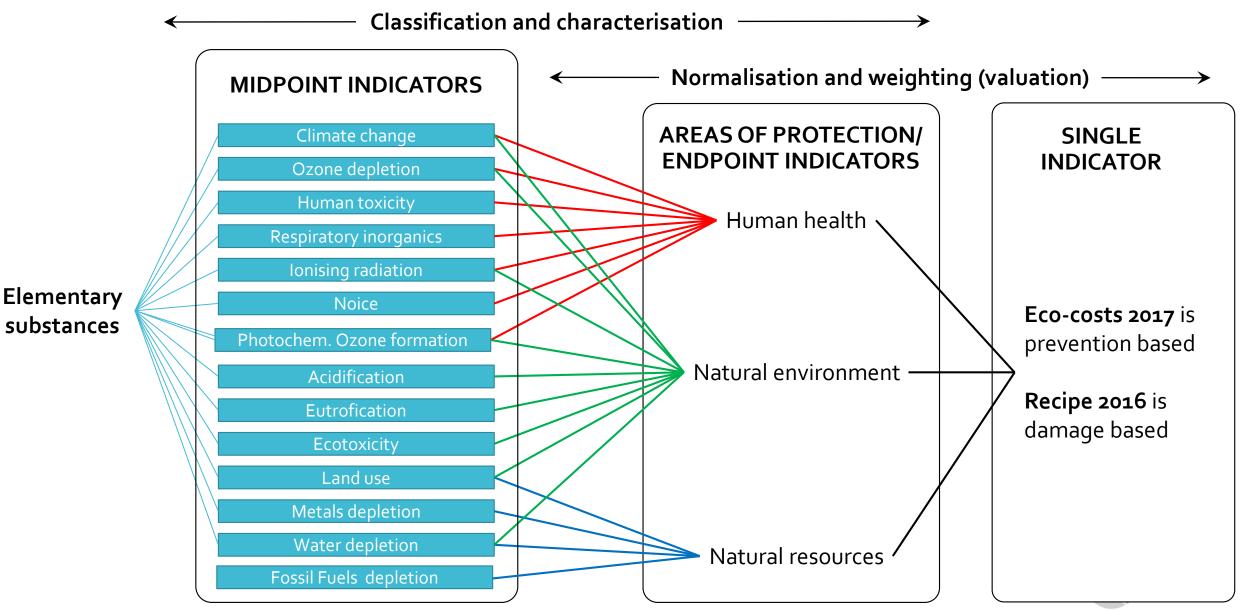
Even a simple system can have hundreds or thousands of emissions!

EXAMPLE: **1** kg steel – list of emissions 719 different emissions to the environment!!

No	Substance	Compartment	Unit	Steel, low-alloyed, at plant/RER S
1	1-Butanol	Air	pg	13.342
2	1-Butanol	Water	ng	142.58
3	1-Pentanol	Air	pg	169.57
4	1-Pentanol	Water	pg	406.96
5	1-Pentene	Air	pg	128.14
6	1-Pentene	Water	pg	307.53
7	1-Propanol	Air	ng	11.545
8	1-Propanol	Water	pg	625.24


$\bullet \bullet \bullet$

714	Zinc-65	Air	nBq	384.12
715	Zinc-65	Water	μBq	947.68
716	Zirconium	Raw	μg	1.8466
717	Zirconium	Air	μg	14.051
718	Zirconium-95	Air	nBq	375.46
719	Zirconium-95	Water	μBq	10.974


Even a simple system can have hundreds or thousands of emissions!

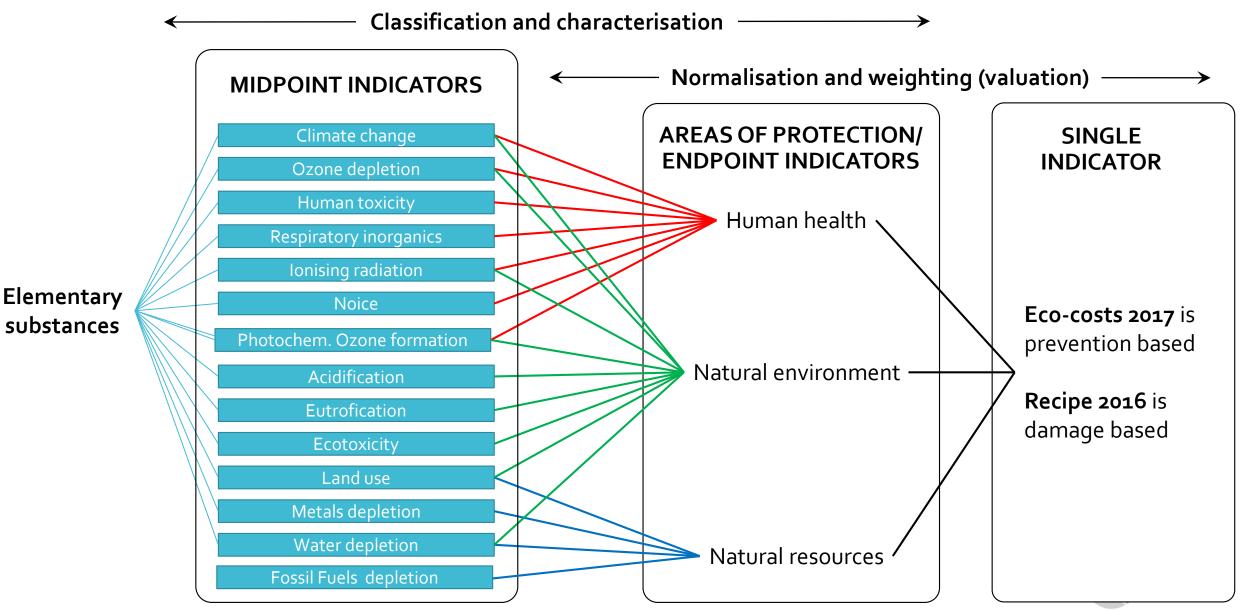
EXAMPLE: 1 kg steel – list of emissions 719 different emissions to the environment!!

Introduction to LCA | Goal and scope | Inventory analysis | Impact assessment | Interpretation | Example

LEARNING & TRAINING PACKAGES

MIDPOINT vs ENDPOINT

	STRENGHT	WEAKNESS
MIDPOINT LEVEL	More impact categoriesLower uncertainty	Difficult interpretation
ENDPOINT LEVEL	Easier interpretation	Higher uncertainty



Midpoint characterisation factors (impact factors) of climate change: 1 kg of CH4 has 30.5 x the impact of CO2 (over a period of 100 years)

Greenhouse gas emission (1 kg)	Formula	GWP (CO2 equiv.)
Carbon dioxide	CO ²	1
Methane	CH ₄	30.5
Nitrous oxide	N₂O	298
Sulphur hexafluoride	SF ₆	23.500
Hydrofluorocarbon-23	CHF ₃	14.800
Hydrofluorocarbon-32	CH ₂ F ₂	675
Perfluoromethane	CF ₄	7.390
Perfluoroethane	C_2F_6	12.200
Perfluoropropane	C ₃ F ₈	8.830
Perfluorobutane	C ₄ F ₁₀	8.860
Perfluorocyclobutane	c-C ₄ F ₈	10.300
Perfluoropentane	C ₅ F ₁₂	13.300
Perfluorohexane	C ₆ F ₁₄	9.300

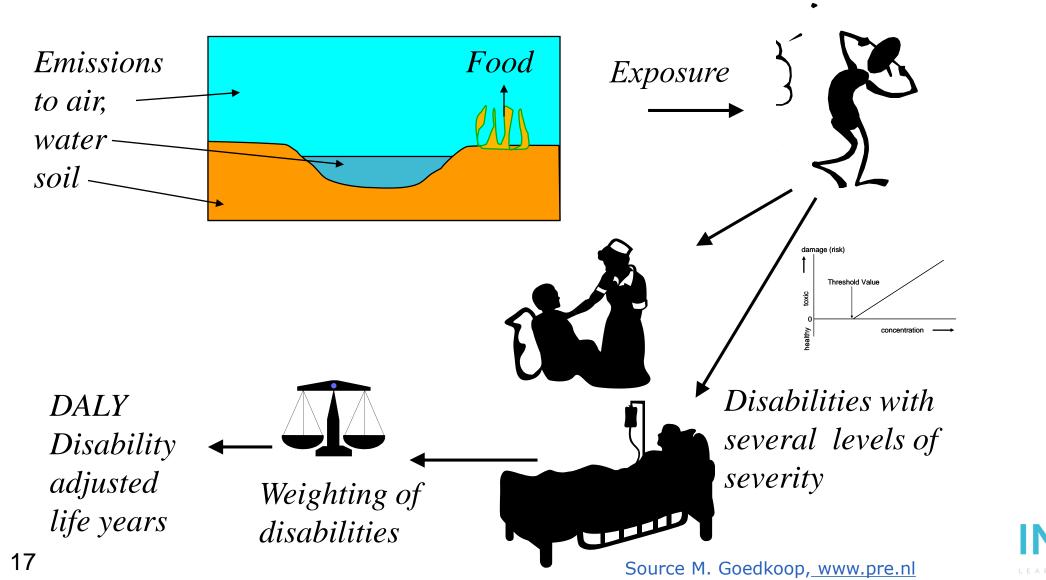
Introduction to LCA | Goal and scope | Inventory analysis | Impact assessment | Interpretation | Example

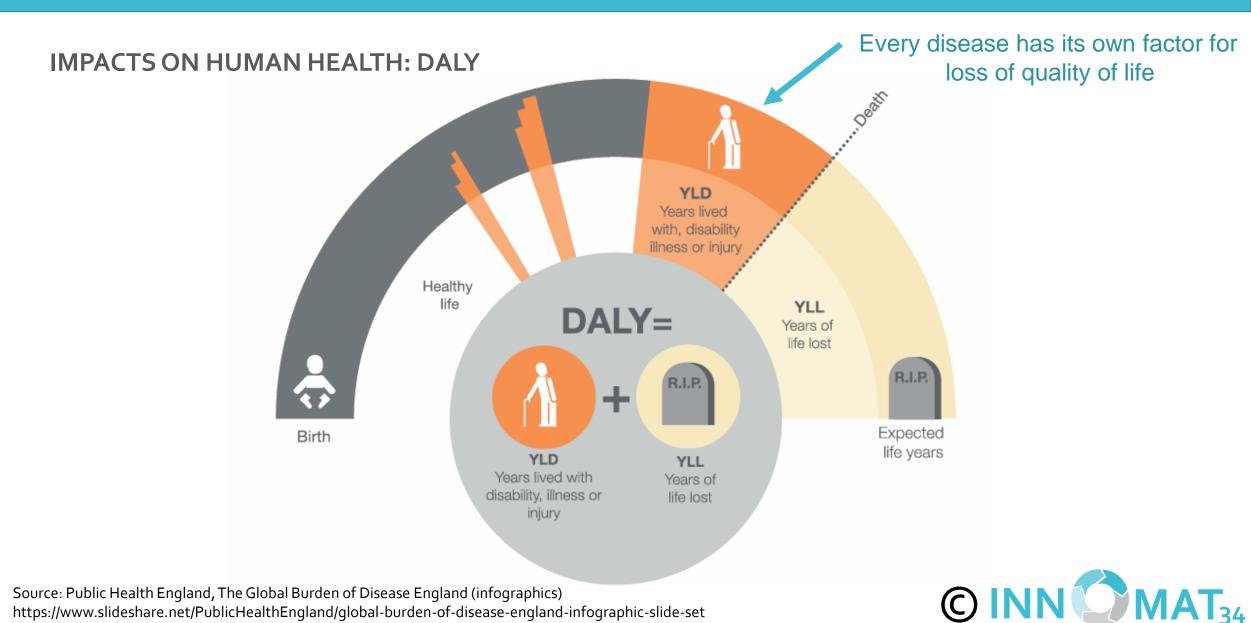
LEARNING & TRAINING PACKAGES

ECO-COSTS (SINGLE INDICATOR)

The Eco-costs measure the amount of environmental impacts, agregating the impact categories of **acidification**, **eutrophication**, **ecotoxicity**, **human toxicity**, **summer smog**, **fine dust and global warming**.

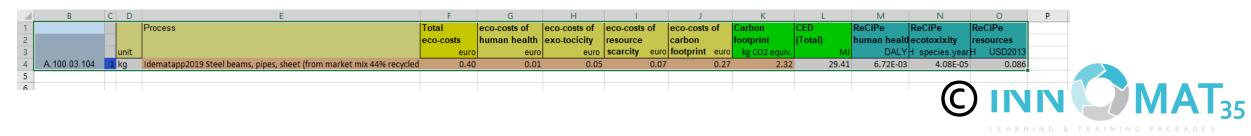
To agregate the impacts of these categories, the impacts in **equivalents are converted to Euros** using the **marginal prevention cost** (i.e., how much would cost to prevent that impact).


Examples:

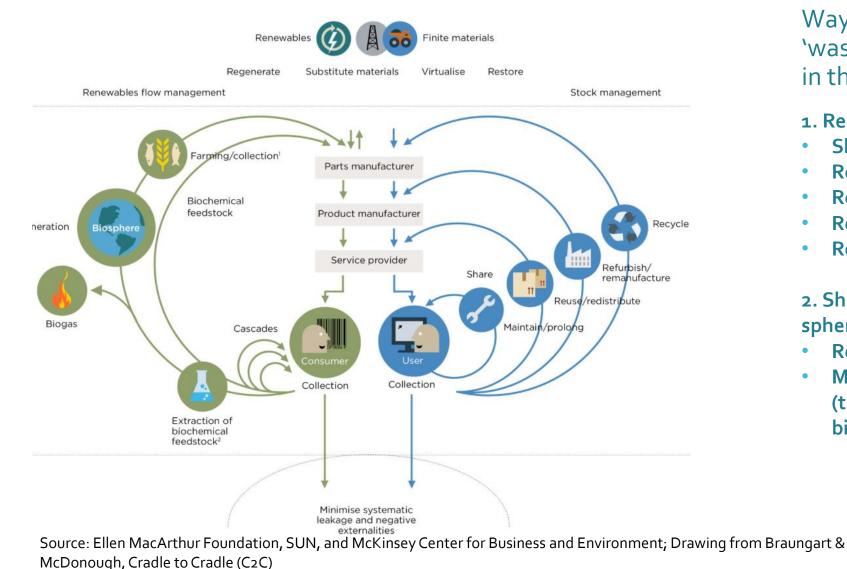

Category	Multiplier (marginal prevention cost)	Midpoint table
eco-costs of acidification	8.75 €/kg SOx equivalent	ILCD 2011 Midpoint+ (incl. country factors)
eco-costs of eutrophication	4.17 €/kg phosphate equivalent	CML-IA baseline

The eco-costs indicator are often used in this course for calculations and exercises.

Calculation of the human health endpoint: the pathway from emission to effect



Source: Public Health England, The Global Burden of Disease England (infographics) https://www.slideshare.net/PublicHealthEngland/global-burden-of-disease-england-infographic-slide-set

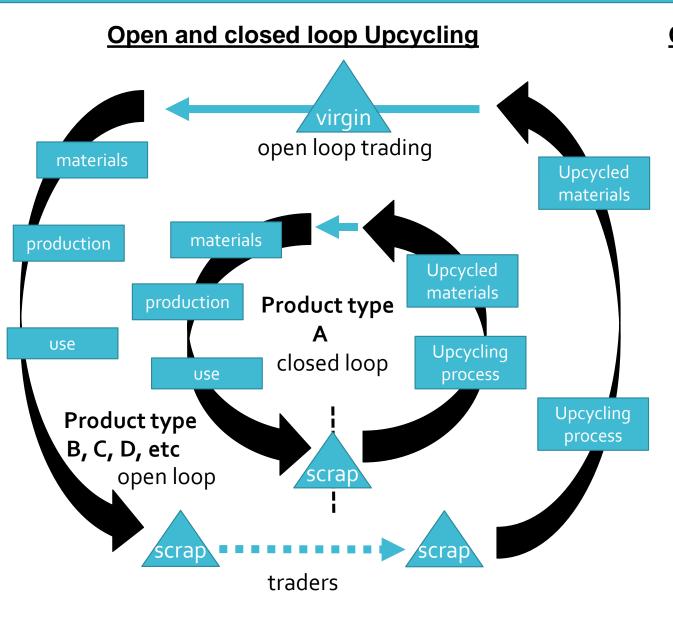

LCA Software

- SimaPro (PRé)
- GaBi (thinkstep)
- Open LCA (GreenDelta)
- Umberto
- IdematLightLCA
- Ecolizer design tool
- Bilan Produit

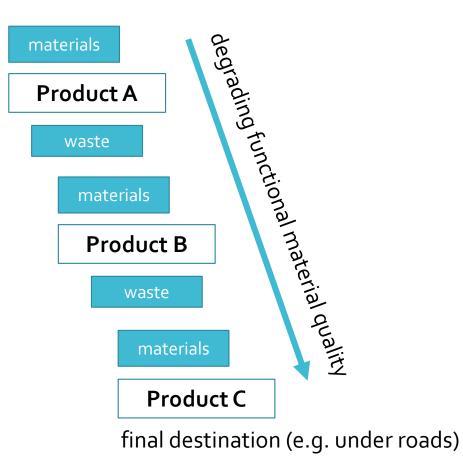
Idematapp excel file with 1200 data lines on eco-costs, carbon footprint, CED, and ReCiPe endpoimts:

A holistic approach: THE BUTTERFLY DIAGRAM

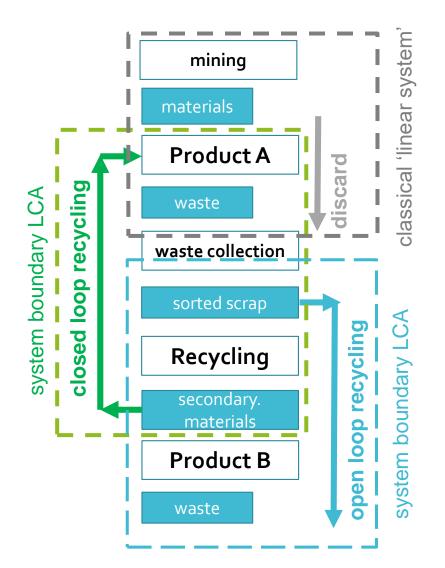
Ways to eliminate 'waste to landfill' in the butterfly:

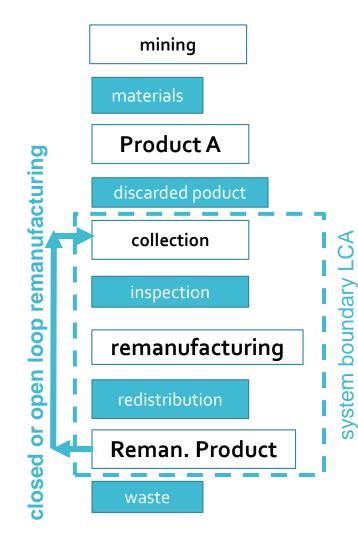

- 1. Reduce materials in the 'techno sphere':
- Share •
- Reuse
- Repair
- **Refurbishing and Remanufacturing**
- **Recycle the materials**

2. Shift to sustainable materials the 'bio sphere':

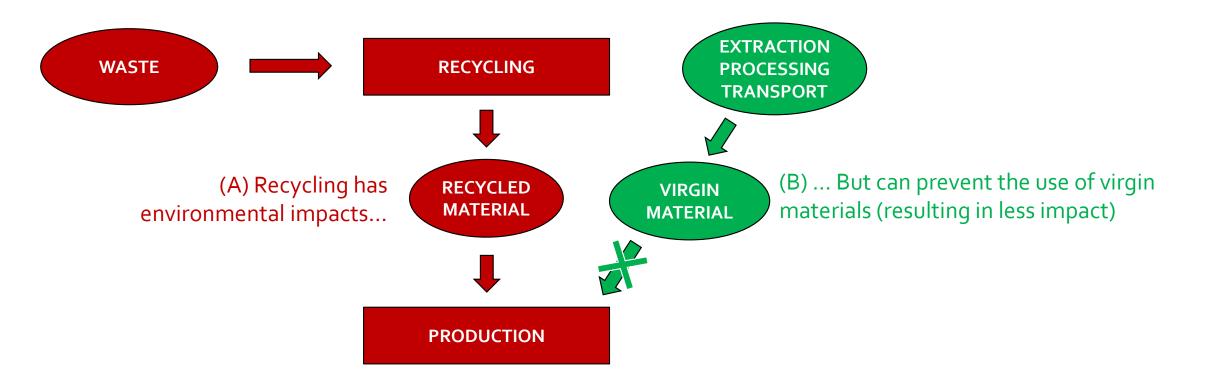

- **Recycle nutrients**
- Make use of the recycling of biogenic CO₂ (the so-called 'short cycle' in nature): biogenic CO₂ is not counted in LCA (IPCC)

Introduction to LCA | Goal and scope | Inventory analysis | Impact assessment | Interpretation | Example




Open loop downcycling (cascading down)

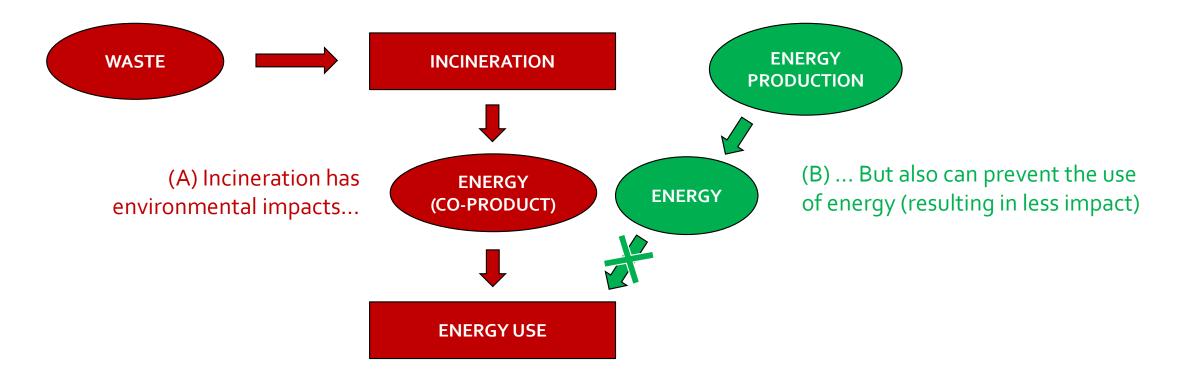
System boundaries and calculation rules in 'Product LCA' :



Calculation rules 'cut-off' and 'attribution' for "Product LCA":

- **Maintenance** is part of the main Life Cycle
- **Reuse** is part of the main Life Cycle: the eco-burden of production is allocated to the subsequent users according the economic value ("economic allocation")
- For **Refurbishing and Remanufacturing** a new Life Cycle is started; part of the ecoburden of the old product is carried over to the new product according economic allocation
- For **open loop upcycling** there is no carry over via the waste of the old product
- **Closed loop upcycling** is part of the main Lyfe Cycle
- **Downcycling** goes from waste to waste (no carry over)

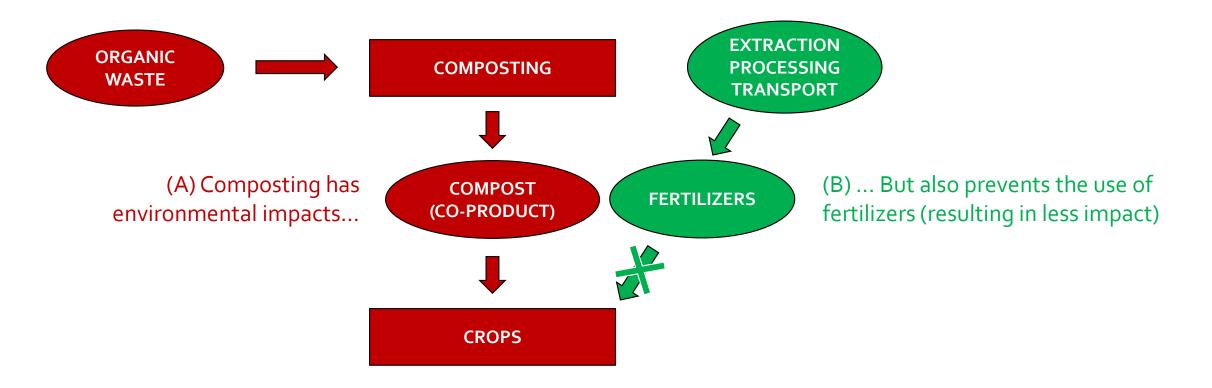
Upcycling in LCA: if the net impact is negative it is called a CREDIT



NET IMPACT = IMPACT (emissions) system A – AVOIDED IMPACT (emissions) system B

For metals the net impact is less (B is more than A), so recycling has a CREDIT

Incineration in LCA : if the net impact is negative it is called a CREDIT



NET IMPACT = IMPACT (emissions) system A – AVOIDED IMPACT (emissions) system B

For fossil based plastics the net impact is more, for biobased plastics and wood it is less

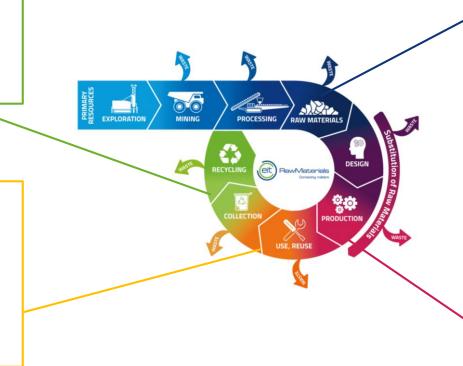
Composting of bio-waste in LCA : if the net impact is negative it is called a CREDIT

NET IMPACT = IMPACT (emissions) system A – AVOIDED IMPACT (emissions) system B

For natural products (i.e. agricultural waste) the net impact is less, for biodegradable plastics not

Significance of LCA results

- Identification of **hotspots** (i.e. main contributors to the impact)
- Identification of both threats and opportunities in the life cycle of the product or service
- Understanding **tradeoffs** between different life cycle stages
- Benchmarking: why design A is better than design B


Examples of opportunities

DISPOSAL INTENSIVE

 Products including hazardous materials (difficult to dispose of safely)

USE INTENSIVE

- Electric and electronic equipment (electricity use)
- Products using consumables
- Products requiring intensive maintenance

RAW MATERIALS INTENSIVE

- Consumption of:
 - Virgin metals
 - Energy intensive materials
 - Natural extracts

PRODUCTION INTENSIVE

- Consumption of:
 - Energy
 - Concumer durables
 - Chemicals
 - Waste generation

Time to practice!

Compare a rechargeable battery vs a single use alkaline

You will need: exercise template (Excel file), Idematapp (Excel file), Instructions (PDF file)

Introduction to LCA | Goal and scope | Inventory analysis

Your own exercise: compare a rechargeable battery vs a single use alkaline,

FU: power to a bicycle lighting system (power: 960mWh) for one year (equivalent to 90 hours of lighting).

Tips to save time:

- In LCA benchmarking you can apply "streamlined LCA', which means that all subsystems which are identical at both sides of the comparison can be neglected
- Be aware that the benefit of metals recycling goes to the next user (so the benefit for the manufacturer of the batteries have EoL = 0), since this case is open loop recycling
- You will experience that electricity for physical assembling can be neglected, as well as the transport in the system.

Note: this is general, but not for wooden products

 When you cannot find an LCI, apply a 'surrogate' product or process, to find out how important it is what you are missing.

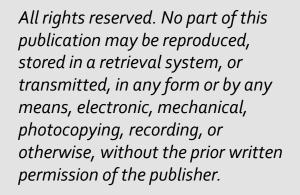
A.030.05	materi	als, chemicals, inorganic	eco-costs	carbon footpr	ReCiPe hum	ReCiPe eco	ReCiPe rec
A.030.05.101	kg	Idematapp2019 Boron	2.96	17.65	1.40E-01	8.50E-04	8.95E-01
A.030.05.102	kg	Idematapp2019 CoO2	28.75	5.02	1.50E-05	2.61E-08	
A.030.05.103	kg	Idematapp2019 Graphite for batteries	1.80	8.39	3.25E-02	1.98E-04	3.21E-01
A.030.05.104	kg	Idematapp2019 H2O2, 70% in H2O	0.07	0.53	6.30E-07	1.66E-09	0.073
A.030.05.105	kg	Idematapp2019 KOH	0.27	1.70			
A.030.05.106	1 kg	Idematapp2019 Lime	0.12	0.59			6 0.073
A.030.05.107	kg	Idematapp2019 Manganese dioxide	0.48	0.94	-5.14E-03	-3.13E-05	i 0.144
A.030.05.108	kg	Idematapp2019 Silicon carbide	0.70	5.43			
A.030.05.109	kg	Idematapp2019 Sodium silicate	0.04	0.31			
A.030.05.110	kg	Idematapp2019 Sulphur	0.09	0.57			
A.030.05.111	kg	Idematapp2019 Titanium dioxide	8.53	3.56			
A.030.05.112	kg	Idematapp2019 Zinc Oxide	1.60	2.95	6.15E-03	3.74E-05	5 1.69E-01
A.050.04.119	m2	Idematapp2019 PCB = Printed Circuit Board (including ICs)	77.01	347.18	2.75E+00	1.67E-02	18.072
A.100.03		, metals, ferro					
A.100.03.101	kg	Idematapp2019 Steel USA	0.37	2.31			
A.100.03.102	kg	Idematapp2019 Steel (21% sec = market mix average)	0.37	2.05			
A.100.03.103	kg	Idematapp2019 Steel (secondary)	0.12	0.69			
A.100.03.104	1 kg	Idematapp2019 Steel beams, pipes, sheet (from market mix 44% recycled)	0.40	2.32	6.72E-03	4.08E-05	0.086
A.100.14		, metals, non ferro	0.07	40.00	0.705.00	4.405.03	0.574
A.100.14.101 A.100.14.102	kg kg	Idematapp2019 Aluminium (primary) Idematapp2019 Aluminium (secondary)	2.67 0.25	10.08 1.87			
A.100.14.102 A.100.14.103	1 kg	Idematapp2019 Aluminium (secondary)	1.84	7.27			
A.100.14.104	kg	Idematapp2019 Antimony, CRM (virgin)	11.07	15.86			
A.100.14.105	kg	Idematapp2019 Cadmium	17.92	3.30			0.220
A.100.14.106	kg	Idematapp2019 Chromium, CRM (virgin)	5.08	26.26			
A.100.14.107	kg	Idematapp2019 Cobalt, CRM (virgin)	44.23	7.72			
A.100.14.108	kg	Idematapp2019 Copper (primary)	7.61	3.60			
A.100.14.109	kg	Idematapp2019 Copper (secondary)	0.30	2.24			
A.100.14.110	1 kg	Idematapp2019 Copper wire, plate, pipe, trade mix (56% prim 44% sec)	4.39	3.00	4.50E-05	9.81E-08	8 0.412
A.100.14.126	kg	Idematapp2019 Nickel (primary)	23.65	79.18	7.43E-05	2.10E-07	6.857
A.100.14.127	kg	Idematapp2019 Nickel (secondary)	0.30	2.24	9.99E-06	5.21E-08	0.288
A.100.14.128	kg	Idematapp2019 Nickel trade mix (70% prim 30% sec)	16.64	56.10	5.50E-05	1.63E-07	4.886
A.100.14.150	kg	Idematapp2019 Zinc (primary)	2.35	3.30	1.58E-05	6.28E-08	0.182
A.100.14.151	kg	Idematapp2019 Zinc (secondary)	0.12	0.76			
A.100.14.152	1 kg	Idematapp2019 Zinc trade mix (77% prim 23% sec)	1.84	2.71			
A.100.16.113	1 kg	Idematapp2019 CuZn40Pb	3.32	2.86	3.30E-05	8.81E-08	0.308
A.120.01	Materials	, packaging, general					
A.120.01.101	kg	Idematapp2019 Board and recycled paper (test liner and fluting)	0.073	0.50			
A.120.01.102	kg	Idematapp2019 Brown paper (kraft liner), FSC	0.057	0.26			
A.120.01.103	m2	Idematapp2019 Brown paper (kraft liner), FSC 70 gr/m2	0.004	0.02			
A.120.01.104	kg	Idematapp2019 Brown paper (kraft liner), unsustainable	0.239	1.83			
A.120.01.105	kg	Idematapp2019 Molded fiber products	0.052	0.36			
A.120.01.106	kg	Idematapp2019 Paper, woodfree uncoated (virgin paper), FSC	0.175	1.21			
A.120.01.107	m2	Idematapp2019 Paper, woodfree uncoated (virgin paper), FSC 80 gr/m2	0.014	0.10			
A.120.01.108	kg	Idematapp2019 Paper, woodfree uncoated (virgin paper), unsustainable	0.358	2.78			
A.120.01.109	m2	Idematapp2019 Printing, flexography with coating	0.065	0.19			
A.120.01.110 A.120.01.111	kg	Idematapp2019 Semichemical fluting, virgin, FSC	0.088 0.270	0.50			
A.120.01.111 A.130.04	kg Materials	Idematapp2019 Semichemical fluting, virgin, unsustainable , plastics, Thermoplasts	0.270	2.07	1.48E-05	8.30E-08	8 0.011
A.130.04.101		Idematapp2019 ABS (Acrylonitrile butadiene styrene)	1.45	3.96	6.74E-06	2.07E-08	0.742
A.130.04.101 A.130.04.102	kg kg	Idematapp2019 ABS 30% glass fibre	1.43				
A.130.04.102 A.130.04.103	kg	Idematapp2019 Ionomer, estimate	1.46				
A.130.04.103	kg	Idematapp2019 PA 6 (Nylon 6, Polyamide 6)	2.02				
A.130.04.104	kg	Idematapp2019 PA 6 GF30	1.44				
A.130.04.106	kg	Idematapp2019 PA 66 (Nylon 66, Polyamide 6-6)	1.99				
A.130.04.121	kg	Idematapp2019 PP (Polypropylene)	1.12	2.04	3.79E-06	1.29E-08	0.601
A.130.04.129	kg	Idematapp2019 PVC (PolyvinyIchloride bulk polymerised)	0.71	2.33	4.34E-06	1.36E-08	0.254
A.130.04.130	kg	Idematapp2019 PVC (Polyvinylchloride emulsion polymerised)	0.80	2.57	4.87E-06	1.82E-08	
A.130.04.131	kg	Idematapp2019 PVC (Polyvinylchloride suspension polymerised)	0.69	2.00	3.91E-06	1.50E-08	0.426

Your own exercise on LCA benchmarking: compare a rechargeable battery vs a single use alkaline.

to be discuss	ied						
life time		e	co-costs	carbon footprint	ReCiPe hum	ReCiPe ecotox	ReCiPe resources
1 year	54 single use batteries		1.18	3.71	6.30E-03	3.83E-05	2.04E-01
1 year	2 rechargebles+ charger		2.03	2.70	4.37E-05	2.25E-07	3.47E-01
2 year	2 rechargebles+ charger		1.43	1.87	3.87E-05	2.13E-07	2.17E-01
3 year	2 rechargebles+ charger		1.23	1.59	3.70E-05	2.09E-07	1.74E-01
4 years	2 rechargebles+ charger		1.13	1.45	3.62E-05	2.07E-07	1.53E-01


DISCUSSION

LEARNING & TRAINING PACKAGES


LCA PRACTICAL GUIDE

You may read for additional information:

project: EU EIT Raw Materials Lifelong Learning KAVA Education project (project number 17226)

contact: david.sanjuandelmas@ugent.be

A practical

designers and business managers

guide for students,

Joost G. Vogtländer

This activity has received funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under the Horizon 2020, the EU Framework Programme for Research and Innovation