

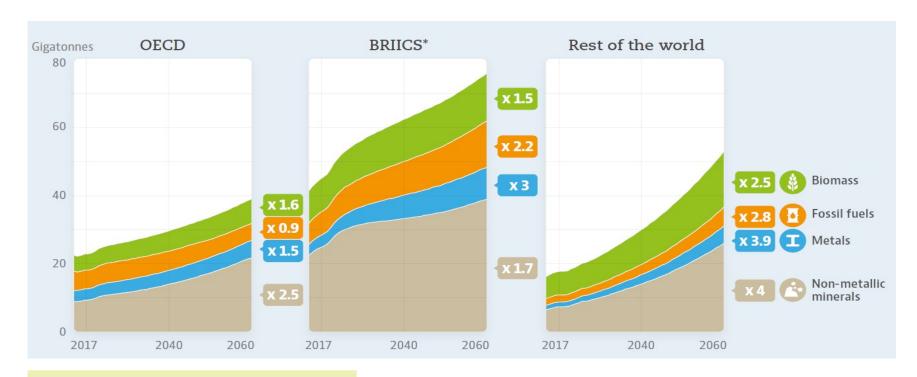
Sustainable ICT Summer School 2020 UCLouvain, 8 September 2020

Circular economy for ICT

Karel Van Acker KU Leuven

- Why circular economy?
- What options do we have?
- How to steer CE in a resourceful direction?

A shift in challenges

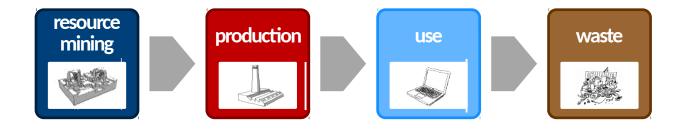

Connectivity, lively memories, ...

Are there enough resources available?

What is the impact of mining and production?

What about waste?

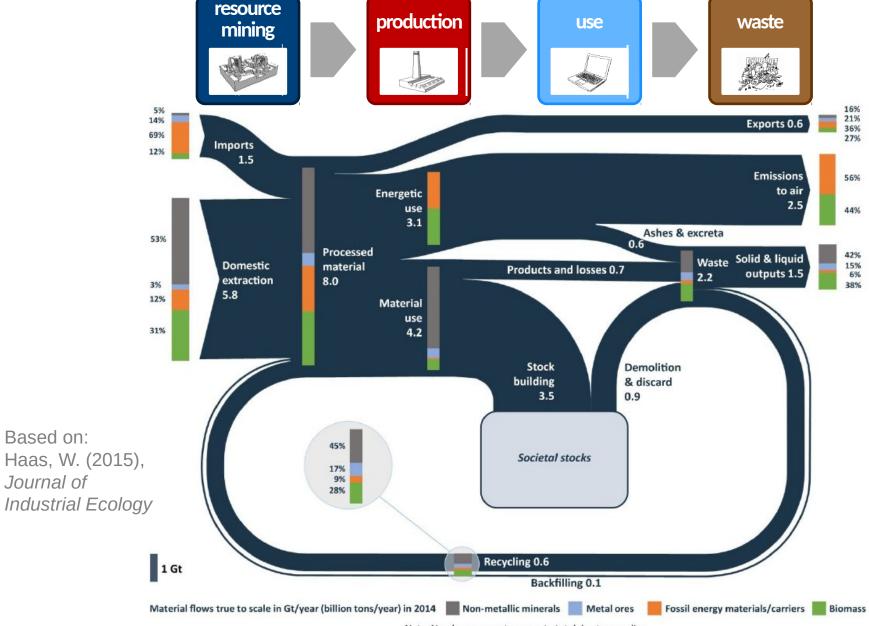
Consumption volumes – forecast



Global materials use is projected to more than double from 79 Gt in 2011 to 167 Gt in 2060.

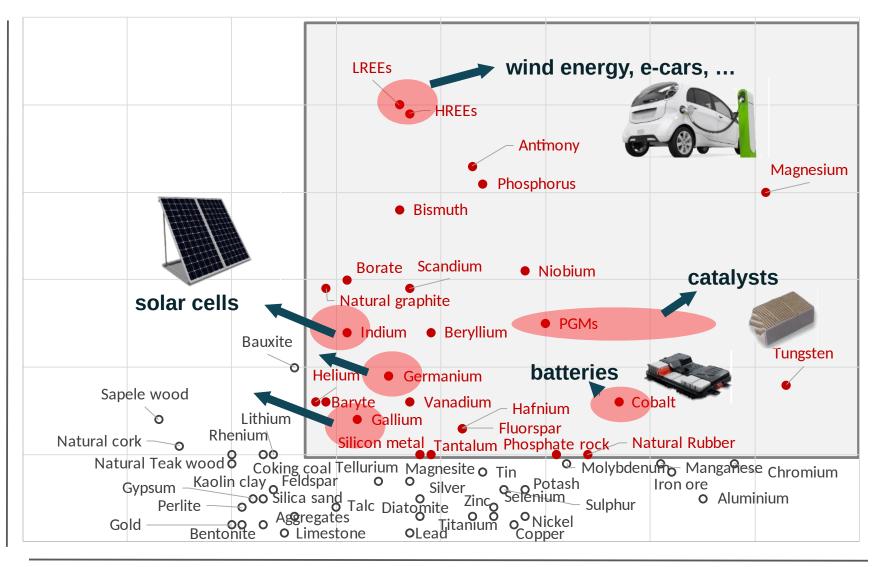
source: OECD. (2019). Global Material

Resources Outlook to 2060





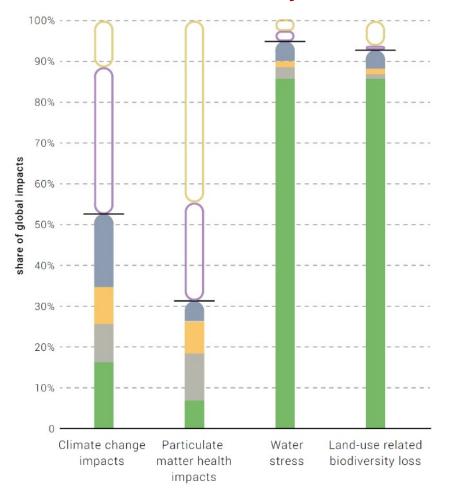
Note: Numbers may not sum up to total due to rounding.



Driver 1: Limits to Resource Availability

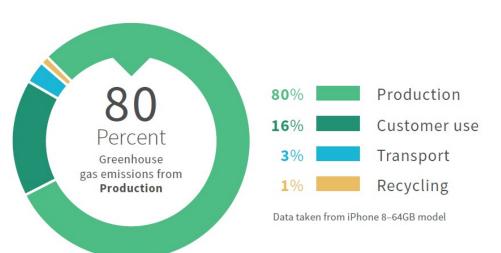
How to secure critical and affordable resources?

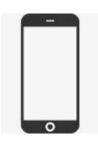
Critical Raw Materials - EC 2017



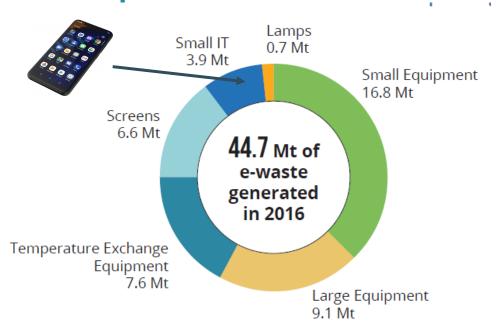

economic importance

Driver 2: Impact on environment


Strong link with climate, biodiversity, water

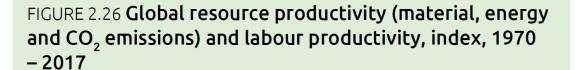

Impact on environment of production

Greenhouse Gas Emissions of a Smartphone

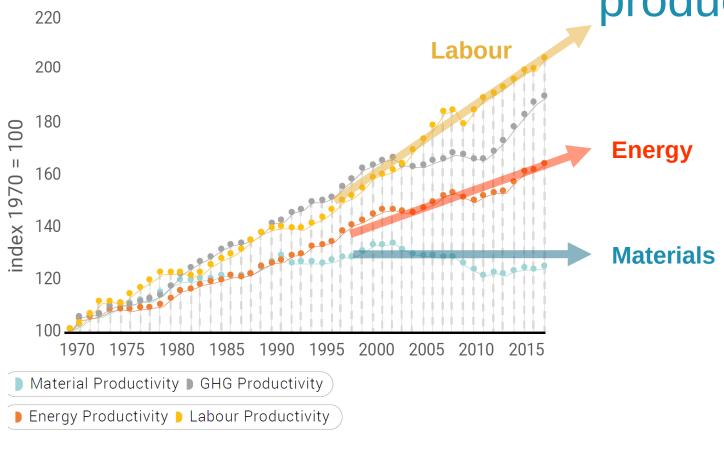

Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Υb	Lu	
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Production = ±35 kg CO_{2eq} emissions

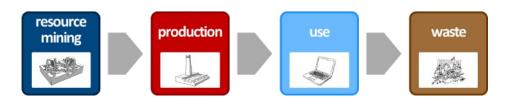
Impact of E-Waste



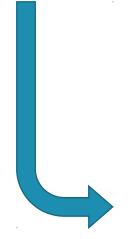
- complex waste streams
- relatively low volumes


BUT:

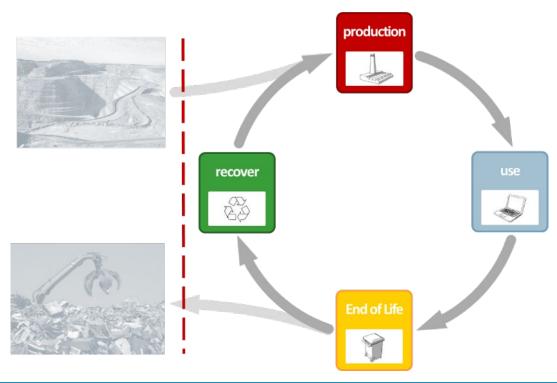
- value of materials
 - > 50 GEUR
- toxic materials:
 - 2,2 Mt hazardous (Hg, Cd, Cr)
- only 1/6 is recycled efficiently
- raising attention for e-waste collection and recycling a.o. through extended producer responsibility (EPR)



Source: EDGAR World Emission Database; IEA World Energy Database; ILO Labour Statstics; UN, 2017a; UNEP & IRP Global Material Flows Database



From linear to circular economy


High resources consumption...

- Availability
- Waste / lost value
- Impact environment

...Keeping materials in the economy as long as possible at high quality

- Less resources
- Less impact on climate
- Avoids waste

Improved resource efficiency could save Flemish businesses

3-6 billion euros per year

that is 2 to 3,5% of the Flemish GDP

Increased Competitiveness

Better security of supply

Potentially 27.000 new jobs in Flanders

- Why circular economy?
- What options do we have?
- How to steer CE in a resourceful direction?

Circular economy strategies

Resources (*Emissons*)

Societal function

| |

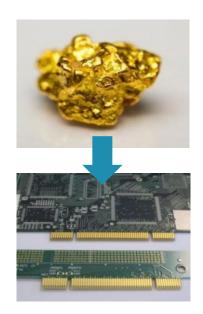
X

Products

Function

Materials

X


Products

Resources (*E*)

Materials

X

Circular economy strategies

Resources (Emissons)	Societal function x	Products Function	Materials Products	Resources (E) Materials
Reduce		Repair Share Product-service	Ecodesign Process intensification	
Improve	Manage Const	Lifetime↑	Functionality of materials ↑	Lightweight Biomaterials Substitutes
Renew		Reuse	Remanufacture	Recycle Design for recycling

Can we make a circular smartphone?

Demand and lifetime...



Table 3.2: Smartphone life cycles by countries, in months, for 2013 - 2015

	USA	China	EU5	France	Germany	Great Britain	Italy	Spain
2015	21.6	19.5	20.4	21.6	18.8	23.5	17.7	20.0
2014	20.9	21.8	19.5	19.4	18.2	22.0	18.7	18.2
2013	20.5	18.6	18.3	18.0	17.1	20.0	18.6	16.6

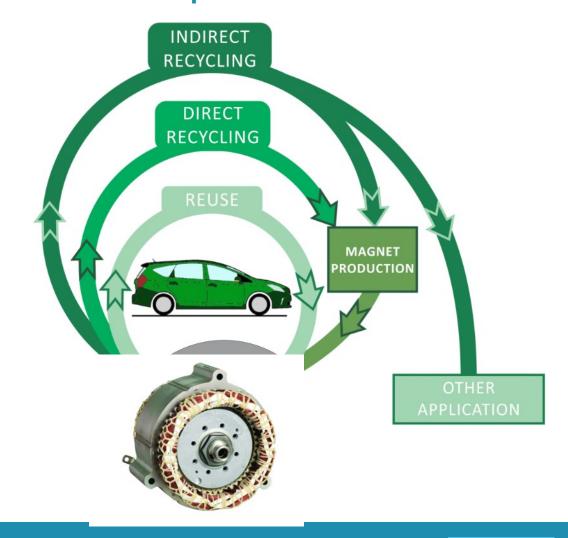
Source: Kantar World Panel 2016

Circular economy strategies

Renew

Close materials loops in a clean and efficient way

Recycling

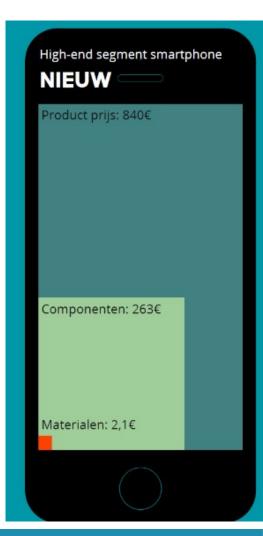

Product	Copper (% by wt)	Silver (ppm)	Gold (ppm)	Palladium (ppm)
Television board	10	280	20	10
PC board	20	1000	250	110
Mobile phone	13	3500	340	130
Portable audio scrap	21	150	10	4
DVD player scrap	5	115	15	4
Average electronics	13.8	1009	127	51.6
Ore/mine	0.6	215.5	1.01	2.7

Kumar, 2017

CAVE 1: Recycling or recycling? Be aware of impacts

Recycling/Remanufacturing/Reuse – different levels

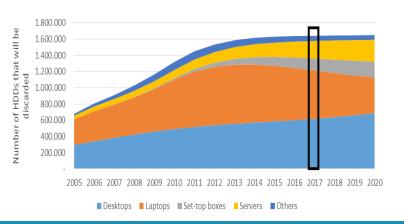
extraction of the chemical elements (e.g. Nd)


recovery of alloys

 (e.g. NdFeB of permanent magnets)

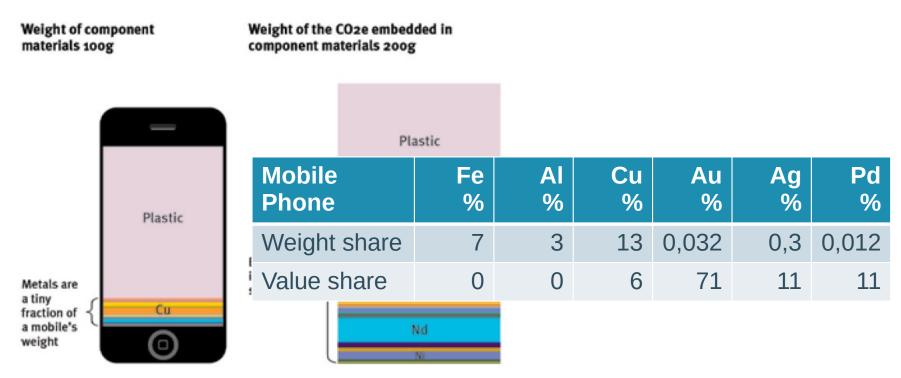
recovery of components

the value of materials in mobile phones is 2% of the total value the value of the components is 33% of the total value


CAVE 2: Better recycling is not only better technology

Better design

Better collection (better incentives?)



Better knowledge of material flows (Material passports?)

CAVE 3: weight based incentives _ value based

source: Green alliance, UK, 2015

CAVE 4: Is recycling the best option? Look at the system

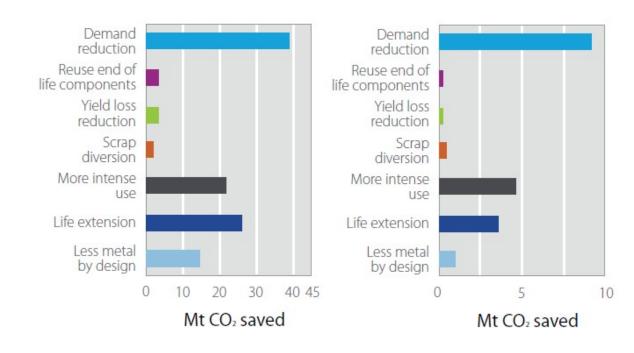
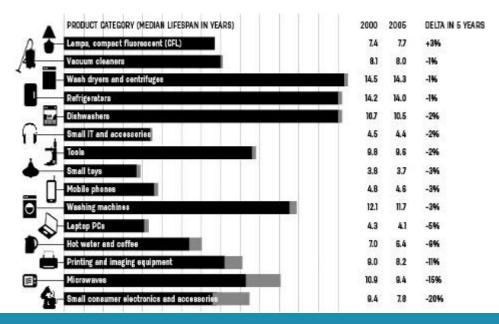


Figure 19.5—Sensitivity analysis for the steel options

Figure 19.6—Sensitivity analysis for the aluminium options


Circular economy strategies

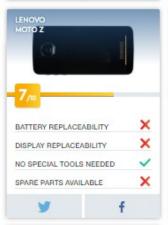
Reduce

Do more with less materials consumption Use all resources with maximum efficiency

- Increasing the functionality?
 Yes, but did we avoid other products?
- Longer lifetime?

Repair

Reparability??



Need for modular design

NO SPECIAL TOOLS NEEDED

SPARE PARTS AVAILABLE

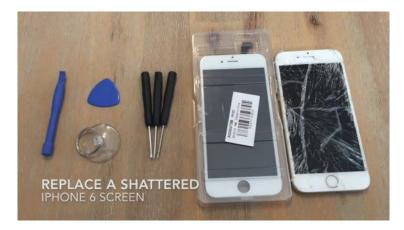
NO SPECIAL TOOLS NEEDED

SPARE PARTS AVAILABLE

×

NO SPECIAL TOOLS NEEDED

SPARE PARTS AVAILABLE

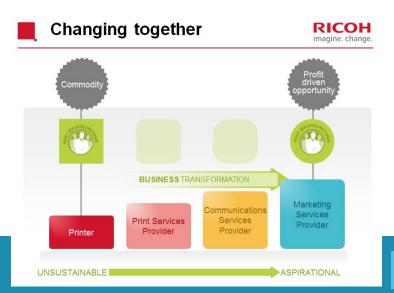

Shift to Product Service Systems (PSS)

- Old business models
- Planned obsolescence
- Producer is no longer owner / responsible
 - property right & problems transferred to consumer
- Bad incentives for material use, waste, recycling, product lifetime, ...

Firestation 6, Livermore CA (since 1901)

Shift to Product service systems (PSS)

- New business models


- Often based on selling SERVICES instead of goods:
- Consumer wants (societal needs):
 - Light (not lamps)
 - Mobility (not a car)
 - Copies/prints (not a printing machine)
 - •
- Producer stays owner of the machine
- Better incentives for durable design, efficient material use, reduction of waste, design for recycling, longer product lifetime, ...

Example: copiers / multifunctionals (B2B)

- Xerox, Canon, Ricoh, ...
- Old business model was to sell machines
- All switched long ago to different options for consumers:
 - Buy, lease, pay-per-page, ...
- Moving forward into broader service domain of document management systems (paper and digital)

Example: household appliances (B2C)

- B/S/H household appliances (Bosch) rents household appliances (refrigerators) in Papillon project
- Social aspect is important
 - Replacing old energy guzzling fridges for poorer households (together with *Samenlevingsopbouw West Vlaanderen*)
- Test in B but more experience in NL
 - Blue Movement, Bundles, ...

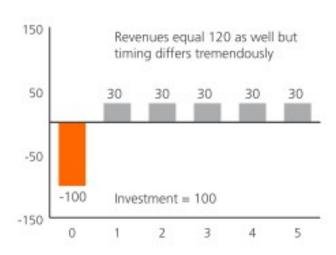
Voorbeeld koelkast met diepvries – klant bij Eandis (met of zonder budgetmeter)						
	oude koelkast 15 jaar oud bij start	nieuwe koelkast met Pappillon				
Papillon						
Energieverbruik per jaar	591 kWh	204 kWh				
Energiekost (10 jaar)	2128€	735€				
Reparatie	300€	Inbegrepen				
Huurgeld	•	694€				
Totale kost	2428€	1429€				
=> Besparing van 999 € in 10 jaar tijd						

Why shifting to a new business model?

- Because of the environmental benefits?
 - Rarely unique reason
- Often because of business economics reasons!
 - Cost reduction
 - Lower cost because of efficiency improvements
 - Value increase
 - Better differentiate consumer segments
 - Competitive advantage
 - Lock in consumers, lock out competitors
 - Customer base expansion
 - Attract new consumers

Environmental advantages

- Producer / service provider faces better incentives for:
 - Longer lifetime of products/components
 (earning money from making things work instead of from fixing them)
 - Material & energy efficiency
 - Remanufacturing & Recycling
 - Waste handling
- But also possible downsides:
 - Will users handle goods with sufficient care? (moral hazard)
 - Rebound effect (more usage in the end)
 - Easier access at lower immediate cost
 - What happens with leased goods at end of contract?
 - Environmental net effect depends on lifetime of good, relative impact in manufacturing use waste phase etc...


Some barriers of PSS

- PSS need longer pay-back periods
 - Revenues come in slowly instead of immediately
 - Big (pre)finance requirement
 - How to convince investors (share holders, banks)?

1. Direct sales model

2. Pay per use

Source: - (2015) Rethinking finance in a circular economy, ING

Some barriers of PSS

- PSS need longer pay-back periods
 - Revenues come in slowly instead of immediately
 - Big (pre)finance requirement
 - How to convince investors (share holders, banks)?
 - Good knowledge of "total cost of ownership" needed
- Rest value of products becomes important and hence the dismantability/recyclability
- PSS requires a long term relationship with a supplier _ good contracts are crucial
- The user has to be motivated to use the product with care: (financial) "co-ownership" of the user

Are consumer ready for PSS?

- "sharing" in mobility is having more and more success
 - Car sharing (Cambio, Degage, ...)
 - Bikes (Blue bike, Swap, e-steps, ...)
 - •
- But for other goods it might be more sensitive, because of
 - Hygiene (e.g. cloths)
 - Status (bv. luxury cars)
 - Identity (bv. smartphones)

Sharing economy

consumers granting each other temporary access to under-utilized physical assets ("idle capacity"), possibly for money

- Why circular economy?
- What options do we have?
- How to steer CE in a resourceful direction?

Needs for a circular economy

- ... a lot of **experiments**There are a lot of strategies, but scientific research shows that potential is especially high in *lifetime extension*, *sharing*, *repairing*,...
- Evidence-based decisions better monitoring
- Dedicated **incentives and targets** (e.g. circular design, value sharing, ...)
- ... and as a priority incentive: stimulate innovation technological, but also societal, financial, ...

Building a system that survives unplanned stresses, rather than buckles under them, requires many of the same principles as a functional transition to the circular economy (WorldBank)

Contact

Karel Van Acker

Professor Circular Economy

Dept. Materials Engineering & Research Centre for Economics and Corporate Sustainability Chairman Sustainability Council KU Leuven Promoter-Coordinator Policy Research Center Circular Economy

c/o KU Leuven MTM | Kasteelpark Arenberg 44 - box 2450 | BE-3001 Leuven | Belgium **T** + 32 (0)16 32 12 71 | **M** +32(0)476 21 09 57 | **E** karel.vanacker@kuleuven.be

KU Leuven Institute for Sustainable Metals and Minerals: https://kuleuven.sim2.be/

Policy Research Centre Circular Economy: https://ce-center.vlaanderen-circulair.be/en

